cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A144385 Triangle read by rows: T(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2 or 3 (n >= 0, 0 <= k <= 3n).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 1, 3, 7, 10, 10, 0, 0, 0, 1, 6, 25, 75, 175, 280, 280, 0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400, 0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400, 0, 0, 0, 0, 0, 0, 1, 21, 266, 2520, 19425, 125895, 695695, 3273270, 12962950, 42042000, 106506400, 190590400, 190590400
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 07 2008, Dec 17 2008

Keywords

Comments

Row n has 3n+1 entries.

Examples

			Triangle begins:
[1]
[0, 1, 1, 1]
[0, 0, 1, 3, 7, 10, 10]
[0, 0, 0, 1, 6, 25, 75, 175, 280, 280]
[0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400]
[0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400]
		

Crossrefs

See A144399, A144402, A144417, A111246 for other versions of this triangle.
Column sums give A001680, row sums give A144416. Taking last nonzero entry in each row gives A025035.
Diagonals include A000217, A001296, A027778, A144516; also A025035.
A generalization of the triangle in A144331 (and in several other entries).
Cf. A144643.

Programs

  • Maple
    T := proc(n, k)
    option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else T(n - 1, k - 1) + (k - 1)*T(n - 1, k - 2) + 1/2*(k - 1)*(k - 2)*T(n - 1, k - 3);
    end if;
    end proc;
    for n from 0 to 12 do lprint([seq(T(n,k),k=0..3*n)]); od:
  • Mathematica
    t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 3*n := t[n, k] = t[n-1, k-1] + (k-1)*t[n-1, k-2] + (1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[, ] = 0; Table[t[n, k], {n, 0, 12}, {k, 0, 3*n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

Formula

T(n, k) = T(n - 1, k - 1) + (k - 1)*T(n - 1, k - 2) + (1/2)*(k - 1)*(k - 2)*T(n - 1, k - 3).
E.g.f.: Sum_{ n >= 0, k >= 0 } T(n, k) y^n x^k / k! = exp( y*(x+x^2/2+x^3/6) ). That is, the coefficient of y^n is the e.g.f. for row n. E.g. the e.g.f. for row 2 is (1/2)*(x+x^2/2+x^3/6)^2 = 1*x^2/2! + 3*x^3/3! + 7*x^4/4! + 10*x^5/5! + 10*x^6/6!.

A144299 Triangle of Bessel numbers read by rows. Row n gives T(n,n), T(n,n-1), T(n,n-2), ..., T(n,0) for n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 3, 0, 0, 1, 10, 15, 0, 0, 0, 1, 15, 45, 15, 0, 0, 0, 1, 21, 105, 105, 0, 0, 0, 0, 1, 28, 210, 420, 105, 0, 0, 0, 0, 1, 36, 378, 1260, 945, 0, 0, 0, 0, 0, 1, 45, 630, 3150, 4725, 945, 0, 0, 0, 0, 0, 1, 55, 990, 6930, 17325, 10395, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 06 2008

Keywords

Comments

T(n,k) is the number of partitions of an n-set into k nonempty subsets, each of size at most 2.
The Grosswald and Choi-Smith references give many further properties and formulas.
Considered as an infinite lower triangular matrix T, lim_{n->infinity} T^n = A118930: (1, 1, 2, 4, 13, 41, 166, 652, ...) as a vector. - Gary W. Adamson, Dec 08 2008

Examples

			Triangle begins:
  n:
  0: 1
  1: 1  0
  2: 1  1   0
  3: 1  3   0    0
  4: 1  6   3    0   0
  5: 1 10  15    0   0  0
  6: 1 15  45   15   0  0  0
  7: 1 21 105  105   0  0  0  0
  8: 1 28 210  420 105  0  0  0  0
  9: 1 36 378 1260 945  0  0  0  0  0
  ...
The row sums give A000085.
For some purposes it is convenient to rotate the triangle by 45 degrees:
  1 0 0 0 0  0  0   0   0    0    0     0 ...
    1 1 0 0  0  0   0   0    0    0     0 ...
      1 3 3  0  0   0   0    0    0     0 ...
        1 6 15 15   0   0    0    0     0 ...
          1 10 45 105 105    0    0     0 ...
             1 15 105 420  945  945     0 ...
                1  21 210 1260 4725 10395 ...
                    1  28  378 3150 17325 ...
                        1   36  630  6930 ...
                             1   45   990 ...
  ...
The latter triangle is important enough that it has its own entry, A144331. Here the column sums give A000085 and the rows sums give A001515.
If the entries in the rotated triangle are denoted by b1(n,k), n >= 0, k <= 2n, then we have the recurrence b1(n, k) = b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2).
Then b1(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1 or 2.
		

References

  • E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.

Crossrefs

Other versions of this same triangle are given in A111924 (which omits the first row), A001498 (which left-adjusts the rows in the bottom view), A001497 and A100861. Row sums give A000085.

Programs

  • Haskell
    a144299 n k = a144299_tabl !! n !! k
    a144299_row n = a144299_tabl !! n
    a144299_tabl = [1] : [1, 0] : f 1 [1] [1, 0] where
       f i us vs = ws : f (i + 1) vs ws where
                   ws = (zipWith (+) (0 : map (i *) us) vs) ++ [0]
    -- Reinhard Zumkeller, Jan 01 2014
    
  • Magma
    A144299:= func< n,k | k le Floor(n/2) select Factorial(n)/(Factorial(n-2*k)*Factorial(k)*2^k) else 0 >;
    [A144299(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
    
  • Maple
    Maple code producing the rotated version:
    b1 := proc(n, k)
    option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2);
    end if;
    end proc;
    for n from 0 to 12 do lprint([seq(b1(n,k),k=0..2*n)]); od:
  • Mathematica
    T[n_,0]=0; T[1,1]=1; T[2,1]=1; T[n_, k_]:= T[n-1,k-1] + (n-1)T[n-2,k-1];
    Table[T[n,k], {n,12}, {k,n,1,-1}]//Flatten (* Robert G. Wilson v *)
    Table[If[k<=Floor[n/2],n!/((n-2 k)! k! 2^k),0], {n, 0, 12},{k,0,n}]//Flatten (* Stefano Spezia, Jun 15 2023 *)
  • SageMath
    def A144299(n,k): return factorial(n)/(factorial(n-2*k)*factorial(k)*2^k) if k <= (n//2) else 0
    flatten([[A144299(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023

Formula

T(n, k) = T(n-1, k-1) + (n-1)*T(n-2, k-1).
E.g.f.: Sum_{k >= 0} Sum_{n = 0..2k} T(n,k) y^k x^n/n! = exp(y(x+x^2/2)). (The coefficient of y^k is the e.g.f. for the k-th row of the rotated triangle shown below.)
T(n, k) = n!/((n - 2*k)!*k!*2^k) for 0 <= k <= floor(n/2) and 0 otherwise. - Stefano Spezia, Jun 15 2023
From G. C. Greubel, Sep 29 2023: (Start)
T(n, 1) = A000217(n-1).
Sum_{k=0..n} T(n,k) = A000085(n).
Sum_{k=0..n} (-1)^k*T(n,k) = A001464(n). (End)

Extensions

Offset fixed by Reinhard Zumkeller, Jan 01 2014

A151338 Triangle read by rows: T(n,k) = number of partitions of [1..k] into n nonempty clumps of sizes 1, 2, 3, 4 or 5 (n >= 0, 0 <= k <= 5n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 3, 7, 15, 31, 56, 91, 126, 126, 0, 0, 0, 1, 6, 25, 90, 301, 938, 2737, 7455, 18711, 41811, 81081, 126126, 126126, 0, 0, 0, 0, 1, 10, 65, 350, 1701, 7686, 32725, 132055, 505351, 1824823, 6173167, 19339320, 55096041
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Comments

Row n has 5n+1 entries.

Examples

			The triangle begins:
1
0, 1, 1, 1, 1, 1
0, 0, 1, 3, 7, 15, 31, 56, 91, 126, 126
0, 0, 0, 1, 6, 25, 90, 301, 938, 2737, 7455, 18711, 41811, 81081, 126126, 126126
0, 0, 0, 0, 1, 10, 65, 350, 1701, 7686, 32725, 132055, 505351, 1824823, 6173167, 19339320, 55096041, 138654516, 295891596, 488864376, 488864376
0, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42315, 241780, 1310925, 6782776, 33549516, 158533375, 713733020, 3046944901, 12246267033, 45892143297, 158167994985, 491492022021, 1336310771796, 3030225834636, 5194672859376, 5194672859376
...
		

Crossrefs

This is one of a sequence of triangles: A144331, A144385, A144643, A151338, A151359, ...
See A151509, A151510 for other versions.

A151359 Triangle read by rows: T(n,k) = number of partitions of [1..k] into n nonempty clumps of sizes 1, 2, 3, 4, 5 or 6 (n >= 0, 0 <= k <= 6n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 3, 7, 15, 31, 63, 119, 210, 336, 462, 462, 0, 0, 0, 1, 6, 25, 90, 301, 966, 2989, 8925, 25641, 70455, 183183, 441441, 966966, 1849848, 2858856, 2858856, 0, 0, 0, 0, 1, 10, 65, 350, 1701, 7770, 33985, 143605, 588511
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2009

Keywords

Comments

Row n has 6n+1 entries.

Examples

			Triangle begins:
[0, 1, 1, 1, 1, 1, 1]
[0, 0, 1, 3, 7, 15, 31, 63, 119, 210, 336, 462, 462]
[0, 0, 0, 1, 6, 25, 90, 301, 966, 2989, 8925, 25641, 70455, 183183, 441441, 966966, 1849848, 2858856, 2858856]
[0, 0, 0, 0, 1, 10, 65, 350, 1701, 7770, 33985, 143605, 588511, 2341339, 9032023, 33668635, 120681561, 413104692, 1337944608, 4046710668, 11216721516, 27756632904, 58555088592, 96197645544, 96197645544]
[0, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42525, 246400, 1370985, 7383376, 38657619, 197212015, 980839860, 4752728981, 22399494117, 102410296989, 452572985865, 1924000439361, 7820764020069, 30157961878044, 109184327692440, 365935843649376, 1113006758944080, 2982608000091720, 6696799094545560, 11423951396577720, 11423951396577720]
...
		

Crossrefs

This is one of a sequence of triangles: A144331, A144385, A144643, A151338, A151359, ...
See A151511, A151512 for other versions.

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_ /; 1 <= n <= 6] = 1; a[] = 0; t[n, k_] := t[n, k] = If[k == 0, a[0]^n, Sum[Binomial[n-1, j-1] a[j] t[n-j, k-1], {j, 0, n-k+1}]]; T[n_, k_] := t[k, n+1]; Table[Table[T[n, k], {k, 0, 6(n+1)} ], {n, 0, 4}] // Flatten (* Jean-François Alcover, Jan 20 2016, using Peter Luschny's Bell transform *)

A144659 a(n) = A001516(n)/2.

Original entry on oeis.org

0, 0, 3, 60, 990, 16485, 292215, 5602338, 116549370, 2627202105, 63960690420, 1675359272730, 47031228602358, 1409683851264780, 44956320071089245, 1520493296271210030, 54376042036599780570, 2050556012681642525763, 81336729496634645414265, 3385729099078381669910310
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2009

Keywords

Formula

Also a(n) = 3*A144507(n).
Also a(n) = Sum_{k} binomial(k-n,2) T(n,k) where T(n,k) is the triangle in A144331.
Showing 1-6 of 6 results.