cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144410 a(n) = 4*(3*n+1)*(3*n+2).

Original entry on oeis.org

8, 80, 224, 440, 728, 1088, 1520, 2024, 2600, 3248, 3968, 4760, 5624, 6560, 7568, 8648, 9800, 11024, 12320, 13688, 15128, 16640, 18224, 19880, 21608, 23408, 25280, 27224, 29240, 31328, 33488, 35720, 38024, 40400, 42848, 45368, 47960, 50624, 53360, 56168, 59048, 62000, 65024, 68120, 71288, 74528, 77840, 81224, 84680, 88208, 91808, 95480
Offset: 0

Views

Author

Paul Curtz, Sep 30 2008

Keywords

Comments

The sequence lists all numbers k such that k+1 is a square and k+4 is divisible by 12. - Bruno Berselli, Sep 28 2017

Crossrefs

Programs

Formula

G.f.: 8*(1 + 7*x + x^2)/(1 - x)^3. - Michael De Vlieger, Sep 29 2017
a(n) = 8*A060544(n+1).
a(n) = A136016(2*n+1).
a(n) = a(m) + 36*(n - m)*(n + m + 1). For m = n-1, a(n) = a(n-1) + 72*n. - Bruno Berselli, Sep 29 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3. - Klaus Purath, Jul 05 2020
E.g.f.: 4*(2 +18*x +9*x^2)*exp(x). - G. C. Greubel, Mar 27 2021
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/(12*sqrt(3)) (A244977).
Sum_{n>=0} (-1)^n/a(n) = log(2)/6. (End)