cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144449 a(n) = 4*(4 + 9*n^2 + 15*n).

Original entry on oeis.org

16, 112, 280, 520, 832, 1216, 1672, 2200, 2800, 3472, 4216, 5032, 5920, 6880, 7912, 9016, 10192, 11440, 12760, 14152, 15616, 17152, 18760, 20440, 22192, 24016, 25912, 27880, 29920, 32032, 34216, 36472, 38800, 41200, 43672, 46216, 48832, 51520, 54280, 57112
Offset: 0

Views

Author

Paul Curtz, Oct 06 2008

Keywords

Comments

A decimation: A061039(6n+5).
a(n) mod 9 = period 3: repeat 7,4,1 = A070403(n+1).

Crossrefs

Subsequence of A008590.

Programs

  • Magma
    [36*n^2 + 60*n + 16: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
    
  • Mathematica
    Table[36n^2+60n+16,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{16,112,280},40] (* Harvey P. Dale, Apr 04 2020 *)
  • PARI
    a(n)=36*n^2+60*n+16 \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [(6*n+5)^2 - 9 for n in (0..40)] # G. C. Greubel, Mar 06 2022

Formula

a(n) = a(n-1) + 24*(3*n+1) = a(n-1) + 72*n + 24, a(0)=16.
A061039(6n+2) = A061039(6n-4) + 24*(3n+1) = a(6n-4) + 72*n + 24, a(2)=16.
From G. C. Greubel, Mar 06 2022: (Start)
G.f.: 8*(2 + 8*x - x^2)/(1-x)^3.
E.g.f.: 4*(4 + 24*x + 9*x^2)*exp(x). (End)
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/12.
Sum_{n>=0} (-1)^n/a(n) = Pi/(18*sqrt(3)) + log(2)/18 - 1/12. (End)

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010