A144503 Sum of n-th antidiagonal of array in A144502.
1, 2, 5, 20, 121, 982, 9933, 120168, 1692273, 27196522, 491229653, 9851789564, 217230600041, 5223386190526, 136025271553693, 3813930989693904, 114553954962370785, 3669540489785558994, 124878930607671376549, 4499311042365955114724, 171098698540513965736025
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..404
Crossrefs
Cf. A144502.
Programs
-
Magma
[n le 2 select n else 2*(n-2)*Self(n-1) +Self(n-2) -2*(n-3): n in [1..30]]; // G. C. Greubel, Oct 09 2023
-
Mathematica
a[n_]:= a[n]= If[n<2, n+1, 2*(n-1)*a[n-1] +a[n-2] -2*(n-2)]; Table[a[n], {n,0,30}] (* G. C. Greubel, Oct 09 2023 *)
-
Ruby
def A144503(n) ary = [] a = [1] (n + 1).times{|i| (1..i).each{|j| a[j] *= i - j a[j] += a[j - 1] } ary << a.inject(:+) a << 0 } ary end p A144503(20) # Seiichi Manyama, Apr 06 2019
-
SageMath
@CachedFunction def a(n): # A144503 if (n<2): return n+1 else: return 2*(n-1)*a(n-1) + a(n-2) - 2*(n-2) [a(n) for n in range(31)] # G. C. Greubel, Oct 09 2023
Formula
a(n) ~ sqrt(Pi) * 2^(n - 1/2) * n^(n - 1/2) / exp(n-1). - Vaclav Kotesovec, Apr 06 2019
a(n) = 2*(n-1)*a(n-1) + a(n-2) - 2*(n-2), with a(0) = 1, a(1) = 2. - G. C. Greubel, Oct 09 2023