A144502
Square array read by antidiagonals upwards: T(n,k) is the number of scenarios for the gift exchange problem in which each gift can be stolen at most once, when there are n gifts in the pool and k gifts (not yet frozen) in peoples' hands.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 7, 7, 5, 1, 37, 37, 30, 16, 1, 266, 266, 229, 155, 65, 1, 2431, 2431, 2165, 1633, 946, 326, 1, 27007, 27007, 24576, 19714, 13219, 6687, 1957, 1, 353522, 353522, 326515, 272501, 198773, 119917, 53822, 13700, 1, 5329837, 5329837, 4976315, 4269271, 3289726, 2199722, 1205857, 486355, 109601, 1
Offset: 0
The array, A(n,k), begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 16, 65, 326, ...
2, 7, 30, 155, 946, 6687, ...
7, 37, 229, 1633, 13219, 119917, ...
37, 266, 2165, 19714, 198773, 2199722, ...
266, 2431, 24576, 272501, 3289726, 42965211, ...
...
Antidiagonal triangle, T(n,k), begins as:
1;
1, 1;
2, 2, 1;
7, 7, 5, 1;
37, 37, 30, 16, 1;
266, 266, 229, 155, 65, 1;
2431, 2431, 2165, 1633, 946, 326, 1;
27007, 27007, 24576, 19714, 13219, 6687, 1957, 1;
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
-
A144301:= func< n | (&+[ Binomial(n+k-1,2*k)*Factorial(2*k)/( Factorial(k)*2^k): k in [0..n]]) >;
function A(n,k)
if n eq 0 then return 1;
elif k eq 0 then return A144301(n);
elif k eq 1 then return A144301(n+1);
else return A(n-1,k+1) + k*A(n,k-1);
end if;
end function;
A144502:= func< n,k | A(n-k, k) >;
[A144502(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
-
B:=proc(p,r) option remember;
if p=0 then RETURN(1); fi;
if r=0 then RETURN(B(p-1,1)); fi;
B(p-1,r+1)+r*B(p,r-1); end;
seq(seq(B(d-k, k), k=0..d), d=0..9);
-
t[0, ]= 1; t[n, 0]:= t[n, 0]= t[n-1, 1];
t[n_, k_]:= t[n, k]= t[n-1, k+1] + k*t[n, k-1];
Table[t[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
-
def A144301(n): return 1 if n<2 else (2*n-3)*A144301(n-1)+A144301(n-2)
@CachedFunction
def A(n,k):
if n==0: return 1
elif k==0: return A144301(n)
elif k==1: return A144301(n+1)
else: return A(n-1,k+1) + k*A(n,k-1)
def A144502(n,k): return A(n-k,k)
flatten([[A144502(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023
Original entry on oeis.org
1, 2, 30, 1633, 198773, 42965211, 14505751627, 7051160946740, 4664901181968498, 4030793305701978223, 4407914679125170417031, 5950921219972964057360847, 9721118017169914469460646225, 18898282608956442548700379478918, 43117198379072165094561711078882078, 114089724623922992953782697056886301761
Offset: 0
-
I:=[1,2,30]; [n le 3 select I[n] else ( 3*(3*n-7)*(3*n-11)*(9*n^2 - 39*n + 41)*Self(n-1) + 3*(3*n-5)*Self(n-2) - (3*n-8)*(3*n-5)*Self(n-3) )/(2*(3*n-8)*(3*n-11)): n in [1..30]]; // G. C. Greubel, Oct 09 2023
-
a[n_]:= a[n]= If[n==0, 1, If[n<3, 2*(15)^(n-1), (3*(3*n-4)*(3*n-8)*(9*n^2- 21*n+11)*a[n-1] +3*(3*n-2)*a[n-2] -(3*n-5)*(3*n-2)*a[n-3])/(2*(3*n-5)*(3*n-8))]];
Table[a[n], {n,0,30}] (* G. C. Greubel, Oct 09 2023 *)
-
@CachedFunction
def a(n): # A144503
if (n<3): return (1,2,30)[n]
else: return ( 3*(3*n-4)*(3*n-8)*(9*n^2 - 21*n + 11)*a(n-1) + 3*(3*n-2)*a(n-2) - (3*n-5)*(3*n-2)*a(n-3) )/(2*(3*n-5)*(3*n-8))
[a(n) for n in range(31)] # G. C. Greubel, Oct 09 2023
Original entry on oeis.org
2, 7, 30, 155, 946, 6687, 53822, 486355, 4877250, 53759351, 646098622, 8409146187, 117836551730, 1768850337295, 28318532194206, 481652022466307, 8673291031865602, 164849403644999655, 3297954931572397790, 69274457019123638011, 1524368720086682440242
Offset: 0
-
A144495:= func< n | (&+[Binomial(n,k)*(k+4)*Factorial(k+1) : k in [0..n]])/2 >;
[A144495(n): n in [0..40]]; // G. C. Greubel, Oct 07 2023
-
f:= rectoproc({a(n)=((4+3*n)*a(n-1)-(n+3)*(n-1)*a(n-2)+(n-1)*(n-2)*a(n-3))/2,a(0)=2,a(1)=7,a(2)=30},a(n),remember):
map(f, [$0..40]); # Robert Israel, Oct 02 2016
-
(* First program *)
t[0, ] = 1; t[n, 0] := t[n, 0] = t[n-1, 1];
t[n_, k_] := t[n, k] = t[n-1, k+1] + k*t[n, k-1];
a[n_] := t[2, n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 19 2022 *)
(* Second program *)
a[n_]:= a[n]= If[n==0, 2, (n*(n^2+3*n+1)*a[n-1] -(n+2))/(n^2+n-1)];
Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 07 2023 *)
-
def A144495(n): return sum(binomial(n,j)*factorial(j+1)*(j+4) for j in range(n+1))/2
[A144495(n) for n in range(41)] # G. C. Greubel, Oct 07 2023
Original entry on oeis.org
7, 37, 229, 1633, 13219, 119917, 1205857, 13318249, 160305343, 2088846709, 29297613277, 440110297777, 7050173910619, 119970793032253, 2161243124917849, 41091937905633337, 822320410135133047, 17277401903869659589, 380267691288777510613, 8749454854573455141889
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (7-5*x+x^2)*Exp(x)/(1-x)^5 ))); // G. C. Greubel, Oct 07 2023
-
CoefficientList[Series[E^x*(7-5*x+x^2)/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
-
def a(n): # a = A144496
if (n==0): return 7
else: return (n*(n^4+10*n^3+33*n^2+44*n+21)*a(n-1) + n^2+6*n+7)/(n^4+6*n^3+9*n^2+4*n+1)
[a(n) for n in range(41)] # G. C. Greubel, Oct 07 2023
Original entry on oeis.org
37, 266, 2165, 19714, 198773, 2199722, 26516581, 345921410, 4856217989, 73003575178, 1170146049557, 19921780455746, 359032158501205, 6828661185433514, 136693194501702533, 2872718327660671042, 63240895146440396261, 1455362908778264247050, 34945987212582211588789
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (37-30*x+9*x^2-x^3)*Exp(x)/(1-x)^7 ))); // G. C. Greubel, Oct 08 2023
-
a[n_]:= If[n<1, 37, (n*(n^6+21*n^5+172*n^4+705*n^3+1522*n^2+1623*n +653)*a[n-1] -(n^3+12*n^2+41*n+37))/(n^6+15*n^5+82*n^4+207*n^3 +244*n^2+105*n-1)];
Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 08 2023 *)
-
my(x='x+O('x^25)); Vec(serlaplace(exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7)) \\ Michel Marcus, Apr 06 2019
-
def A144497_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( (37-30*x+9*x^2-x^3)*exp(x)/(1-x)^7 ).egf_to_ogf().list()
A144497_list(40) # G. C. Greubel, Oct 08 2023
Original entry on oeis.org
1, 65, 946, 13219, 198773, 3289726, 60042295, 1203809111, 26367604594, 627370195033, 16127774194871, 445733080387750, 13185075339881521, 415765494276887249, 13925084982848794378, 493754789222478044011, 18480155500259244528605, 728143711886491334229526
Offset: 0
-
[n le 2 select (65)^(n-1) else ((24*n^3-12*n^2+2*n-9)*Self(n-1) + (12*n^2-11)*Self(n-2))/(12*(n-1)^2 -11): n in [1..40]]; // G. C. Greubel, Oct 08 2023
-
a[n_]:= a[n]= If[n<2, (65)^n, ((24*n^3+60*n^2+50*n+5)*a[n-1] +(12*n^2 + 24*n+1)*a[n-2])/(12*n^2-11)];
Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 08 2023 *)
-
@CachedFunction
def a(n): # a = A144500
if (n<2): return (65)^n
else: return ((24*n^3 + 60*n^2 + 50*n + 5)*a(n-1) + (12*n^2 + 24*n + 1)*a(n-2))/(12*n^2 - 11)
[a(n) for n in range(41)] # G. C. Greubel, Oct 08 2023
Showing 1-6 of 6 results.