cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144534 Denominators of continued fraction convergents to sqrt(8/9).

Original entry on oeis.org

1, 1, 17, 35, 577, 1189, 19601, 40391, 665857, 1372105, 22619537, 46611179, 768398401, 1583407981, 26102926097, 53789260175, 886731088897, 1827251437969, 30122754096401, 62072759630771, 1023286908188737, 2108646576008245, 34761632124320657, 71631910824649559
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Examples

			0, 1, 16/17, 33/35, 544/577, 1121/1189, 18480/19601, 38081/40391, 627776/665857, ...
		

Crossrefs

Programs

  • Magma
    I:=[1,1,17,35]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 01 2014
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[8/9], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents [Sqrt[8/9], 30]] (* Vincenzo Librandi, Feb 01 2014 *)

Formula

a(n) = 16*a(n-1) + a(n-2) if n odd, otherwise a(n) = 2*a(n-1) + a(n-2), for n >= 2.
a(n) = 34*a(n-2)-a(n-4). G.f.: (x^3-17*x^2+x+1)/((x^2-6*x+1)*(x^2+6*x+1)). [Colin Barker, Jul 16 2012]

A144532 Continued fraction for sqrt(8/9).

Original entry on oeis.org

0, 1, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Comments

Or, continued fraction for 2*sqrt(2)/3.

Crossrefs

Essentially the same as A040063.
Showing 1-2 of 2 results.