cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144533 Numerators of continued fraction convergents to sqrt(8/9).

Original entry on oeis.org

0, 1, 16, 33, 544, 1121, 18480, 38081, 627776, 1293633, 21325904, 43945441, 724452960, 1492851361, 24610074736, 50713000833, 836018088064, 1722749176961, 28400004919440, 58522759015841, 964764149172896, 1988051057361633, 32773581066959024, 67535213191279681
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Examples

			0, 1, 16/17, 33/35, 544/577, 1121/1189, 18480/19601, 38081/40391, 627776/665857, ...
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 16, 33]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    CoefficientList[Series[- x (x^2 - 16 x - 1)/((x^2 - 6 x + 1) (x^2 + 6 x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    Convergents[Sqrt[8/9],30]//Numerator (* or *) LinearRecurrence[{0,34,0,-1},{0,1,16,33},30] (* Harvey P. Dale, Oct 09 2022 *)

Formula

a(n) = 16*a(n-1) + a(n-2) if n odd, otherwise a(n) = 2*a(n-1) + a(n-2), for n >= 2.
a(n) = 34*a(n-2)-a(n-4). G.f.: -x*(x^2-16*x-1)/((x^2-6*x+1)*(x^2+6*x+1)). [Colin Barker, Jul 16 2012]

A144532 Continued fraction for sqrt(8/9).

Original entry on oeis.org

0, 1, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16, 2, 16
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Comments

Or, continued fraction for 2*sqrt(2)/3.

Crossrefs

Essentially the same as A040063.
Showing 1-2 of 2 results.