cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144615 a(n) = A000203(3n+2).

Original entry on oeis.org

3, 6, 15, 12, 24, 18, 42, 24, 42, 30, 63, 48, 60, 42, 84, 48, 93, 54, 120, 60, 96, 84, 126, 72, 114, 96, 186, 84, 132, 90, 168, 120, 171, 102, 210, 108, 216, 114, 210, 144, 186, 156, 255, 132, 204, 138, 336, 168, 222, 150, 300, 192, 240, 192, 294, 168, 324, 174, 372, 180, 336
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2009

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 3 + 6*x + 15*x^2 + 12*x^3 + 24*x^4 + 18*x^5 + 42*x^6 + 24*x^7 + 42*x^8 + ...
G.f. = 3*q^2 + 6*q^5 + 15*q^8 + 12*q^11 + 24*q^14 + 18*q^17 + 42*q^20 + 24*q^23 + ...
		

Crossrefs

Programs

  • GAP
    sequence := List([0..10^4],n->Sigma(3*n+2)); # Muniru A Asiru, Dec 29 2017
    
  • Magma
    [SumOfDivisors(3*n+2): n in [0..70]]; // Vincenzo Librandi, Jan 19 2018
  • Maple
    with(numtheory):
    seq(sigma(3*n+2), n=0..10^3); # Muniru A Asiru, Dec 29 2017
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 3 n + 2]]; (* Michael Somos, Jul 14 2015 *)
    a[ n_] := SeriesCoefficient[ 3 (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, Jul 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* Michael Somos, Jun 07 2012 */
    
  • PARI
    a(n)=sigma(3*n+2); \\ Michel Marcus, Jul 14 2015
    

Formula

Expansion of q^(-2/3) * c(q)^2 / 3 in powers of q where c() is a cubic AGM theta function. - Michael Somos, Jun 07 2012
Expansion of q^(-2/3) * 3 * (eta(q^3)^3 / eta(q))^2 in powers of q. - Michael Somos, Jun 07 2012
a(n) = A000203(A016789(n)). - Michel Marcus, Jul 14 2015
a(n) = 3*A033686(n). - Robert G. Wilson v, Jan 12 2018
Sum_{k=1..n} a(k) = (2*Pi^2/9) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022