cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144677 Related to enumeration of quantum states (see reference for precise definition).

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 18, 24, 30, 40, 50, 60, 75, 90, 105, 126, 147, 168, 196, 224, 252, 288, 324, 360, 405, 450, 495, 550, 605, 660, 726, 792, 858, 936, 1014, 1092, 1183, 1274, 1365, 1470, 1575, 1680, 1800, 1920, 2040, 2176, 2312, 2448, 2601, 2754, 2907, 3078, 3249, 3420
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2009

Keywords

Comments

Equals (1, 2, 3, ...) convolved with (1, 0, 0, 2, 0, 0, 3, ...) = (1 + 2*x + 3*x^2 + ...) * (1 + 2*x^3 + 3*x^6 + ...). - Gary W. Adamson, Feb 23 2010
The Ca2 and Ze4 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of the sequence given above, e.g., Ca2(n) = a(n-1) + 2*a(n-2) + 3*a(n-3) + a(n-4). - Johannes W. Meijer, May 20 2011

Crossrefs

Programs

  • Magma
    I:=[1,2,3,6,9,12,18,24]; [n le 8 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3)-4*Self(n-4)+2*Self(n-5)-Self(n-6)+2*Self(n-7)-Self(n-8): n in [1..60]]; // Vincenzo Librandi, Mar 28 2015
    
  • Maple
    n:=80; lambda:=3; S10b:=[];
    for ii from 0 to n do
    x:=floor(ii/lambda);
    snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3);
    S10b:=[op(S10b),snc];
    od:
    S10b;
    A144677 := proc(n) option remember; local k1; sum(A190717(n-k1),k1=0..2) end: A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3,3) end: seq(A144677(n), n=0..53); # Johannes W. Meijer, May 20 2011
  • Mathematica
    CoefficientList[Series[1/((x - 1)^4*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Mar 28 2015 *)
    LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {1, 2, 3, 6, 9, 12, 18, 24}, 60 ] (* Vincenzo Librandi, Mar 28 2015 *)
  • Sage
    @CachedFunction
    def a(n): return sum( ((j+3)//3)*((n-j+3)//3) for j in (0..n) )
    [a(n) for n in (0..60)] # G. C. Greubel, Oct 18 2021

Formula

From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A190717(n-2) + A190717(n-1) + A190717(n).
a(n-2) + a(n-1) + a(n) = A014125(n).
G.f.: 1/((1-x)^4*(1+x+x^2)^2). (End)
From Wesley Ivan Hurt, Mar 28 2015: (Start)
a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8).
a(n) = ((2 + floor(n/3))^3 - floor((n+4)/3) + floor((n+4)/3)^3 - floor((n+5)/3) + floor((n+5)/3)^3 - floor((n+6)/3))/6. (End)
a(n) = Sum_{j=0..n} floor((j+3)/3)*floor((n-j+3)/3). - G. C. Greubel, Oct 18 2021