A144678 Related to enumeration of quantum states (see reference for precise definition).
1, 2, 3, 4, 7, 10, 13, 16, 22, 28, 34, 40, 50, 60, 70, 80, 95, 110, 125, 140, 161, 182, 203, 224, 252, 280, 308, 336, 372, 408, 444, 480, 525, 570, 615, 660, 715, 770, 825, 880, 946, 1012, 1078, 1144, 1222, 1300, 1378, 1456, 1547, 1638, 1729, 1820, 1925, 2030, 2135
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10b, lambda=4]
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,2,-4,2,0,-1,2,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^4))^2 )); // G. C. Greubel, Oct 18 2021 -
Maple
n:=80; lambda:=4; S10b:=[]; for ii from 0 to n do x:=floor(ii/lambda); snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3); S10b:=[op(S10b),snc]; od: S10b; A144678 := proc(n) option remember; local k; sum(A190718(n-k),k=0..3) end: A190718:= proc(n) binomial(floor(n/4)+3,3) end: seq(A144678(n),n=0..54); # Johannes W. Meijer, May 20 2011
-
Mathematica
a[n_] = (r = Mod[n, 4]; (4+n-r)(8+n-r)(3+n+2r)/96); Table[a[n], {n, 0, 54}] (* Jean-François Alcover, Sep 02 2011 *) LinearRecurrence[{2,-1,0,2,-4,2,0,-1,2,-1}, {1,2,3,4,7,10,13,16,22,28}, 60] (* G. C. Greubel, Oct 18 2021 *)
-
PARI
Vec(1/(x-1)^4/(x^3+x^2+x+1)^2+O(x^99)) \\ Charles R Greathouse IV, Jun 20 2013
-
Sage
def A144678_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x)*(1-x^4))^2 ).list() A144678_list(60) # G. C. Greubel, Oct 18 2021
Formula
From Johannes W. Meijer, May 20 2011: (Start)
a(n-3) + a(n-2) + a(n-1) + a(n) = A122046(n+3).
G.f.: 1/((x-1)^4*(x^3+x^2+x+1)^2). (End)
a(n) = A009531(n+5)/16 + (n+5)*(2*n^2+20*n+33+3*(-1)^n)/192 . - R. J. Mathar, Jun 20 2013
a(n) = Sum_{i=1..n+8} floor(i/4) * floor((n+8-i)/4). - Wesley Ivan Hurt, Jul 21 2014
From Alois P. Heinz, Dec 22 2021: (Start)
G.f.: 1/((1-x)*(1-x^4))^2.
a(n) = Sum_{j=0..floor(n/4)} (j+1)*(n-4*j+1). (End)
Comments