cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144845 Least number k such that all coefficients of k*B(n,x), the n-th Bernoulli polynomial, are integers.

Original entry on oeis.org

1, 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, 6, 2730, 210, 30, 6, 510, 30, 3990, 210, 2310, 330, 690, 30, 2730, 546, 42, 14, 870, 30, 14322, 462, 39270, 3570, 210, 6, 1919190, 51870, 2730, 210, 94710, 2310, 99330, 2310, 4830, 4830, 9870, 210, 46410, 6630, 14586, 858
Offset: 0

Views

Author

T. D. Noe, Sep 22 2008

Keywords

Comments

The lcm of the terms in row n of A053383. It appears that the Bernoulli polynomial B(n,x) is irreducible for all even n.
This sequence appears in a paper of Bazsó & Mező, who use this sequence to give necessary and sufficient conditions for power sums to be integer polynomials. - Istvan Mezo, Mar 20 2016
In "The denominators of power sums of arithmetic progressions" Corollary 1, we give a simple way to compute a(n) without using Bernoulli polynomials. Namely, a(n) equals (product of the primes dividing n+1) times (product of the primes p <= (n+1)/(2+(n+1 mod 2)) not dividing n+1 such that the sum of the base-p digits of n+1 is at least p). - Bernd C. Kellner and Jonathan Sondow, May 15 2017

Crossrefs

Programs

  • Maple
    seq(denom(bernoulli(i,x)),i=0..51); # Peter Luschny, Jun 16 2012
  • Mathematica
    (* From Bernd C. Kellner, Oct 18 2023: (Start) *)
    (* Denominator formula *)
    Table[Denominator[Together[BernoulliB[n, x]]], {n, 0, 51}]
    (* Product formula *)
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]]; rad[n_] := Times @@ Select[Divisors[n], PrimeQ]; (* A324370 *) DD2[n_] := Times @@ Select[Prime[Range[PrimePi[(n+1)/(2+Mod[n+1, 2])]]], !Divisible[n, #] && SD[n, #] >= # &];
    DB[n_] := DD2[n+1] rad[n+1]; Table[DB[n], {n, 0, 51}]
    (* (End) *)
  • PARI
    a(n) = lcm(apply(x->denominator(x), Vec(bernpol(n)))); \\ Michel Marcus, Mar 03 2020
  • Sage
    def A144845(n):
        return mul(prime_divisors(n+1) + [p for p in (2..(n+2)//(2+n%2))
        if is_prime(p) and not p.divides(n+1) and sum((n+1).digits(base=p)) >= p])
    print([A144845(n) for n in (0..51)]) # Peter Luschny, Sep 12 2018
    

Formula

From Bernd C. Kellner, Oct 18 2023: (Start)
Let rad(n) = A007947(n) be the radical of n. Let (n)_m be the falling factorial. Let f^(m)(x) denote the m-th derivative of f(x).
a(n) = lcm(A195441(n-1), A027642(n)) = lcm(denom(B(n,x)-B_n), denom(B_n)) = denom(B(n,x)).
a(n) = lcm(A195441(n), rad(n+1)).
a(n) = lcm(a(n+1), rad(n+1)), if n >= 2 is even.
a(2n)/a(2n+1) = A286517(n), if n >= 1.
a(n) = A324369(n+1) * A324370(n+1) * A324371(n+1).
a(n) = A324370(n+1) * rad(n+1).
a(n) = rad(A064538(n)).
If n >= m >= 1, then denom(B^(m)(n,x)) = a(n-m)/gcd(a(n-m), (n)A324370(n-m+1)/gcd(A324370(n-m+1),%20(n)">m) = A324370(n-m+1)/gcd(A324370(n-m+1), (n){m-1}).
(See papers of Kellner and Kellner & Sondow.) (End)