A144845 Least number k such that all coefficients of k*B(n,x), the n-th Bernoulli polynomial, are integers.
1, 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, 6, 2730, 210, 30, 6, 510, 30, 3990, 210, 2310, 330, 690, 30, 2730, 546, 42, 14, 870, 30, 14322, 462, 39270, 3570, 210, 6, 1919190, 51870, 2730, 210, 94710, 2310, 99330, 2310, 4830, 4830, 9870, 210, 46410, 6630, 14586, 858
Offset: 0
Keywords
Links
- Bernd C. Kellner, Table of n, a(n) for n = 0..10000 (n = 0..1000 from T. D. Noe)
- András Bazsó and István Mező, On the coefficients of power sums of arithmetic progressions, J. Number Th., 153 (2015), 117-123.
- András Bazsó and István Mező, Some Notes on Alternating Power Sums of Arithmetic Progressions, J. Int. Seq., Vol. 21 (2018), Article 18.7.8.
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
- Eric Weisstein's World of Mathematics, Bernoulli Polynomial.
Crossrefs
Programs
-
Maple
seq(denom(bernoulli(i,x)),i=0..51); # Peter Luschny, Jun 16 2012
-
Mathematica
(* From Bernd C. Kellner, Oct 18 2023: (Start) *) (* Denominator formula *) Table[Denominator[Together[BernoulliB[n, x]]], {n, 0, 51}] (* Product formula *) SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]]; rad[n_] := Times @@ Select[Divisors[n], PrimeQ]; (* A324370 *) DD2[n_] := Times @@ Select[Prime[Range[PrimePi[(n+1)/(2+Mod[n+1, 2])]]], !Divisible[n, #] && SD[n, #] >= # &]; DB[n_] := DD2[n+1] rad[n+1]; Table[DB[n], {n, 0, 51}] (* (End) *)
-
PARI
a(n) = lcm(apply(x->denominator(x), Vec(bernpol(n)))); \\ Michel Marcus, Mar 03 2020
-
Sage
def A144845(n): return mul(prime_divisors(n+1) + [p for p in (2..(n+2)//(2+n%2)) if is_prime(p) and not p.divides(n+1) and sum((n+1).digits(base=p)) >= p]) print([A144845(n) for n in (0..51)]) # Peter Luschny, Sep 12 2018
Formula
From Bernd C. Kellner, Oct 18 2023: (Start)
Let rad(n) = A007947(n) be the radical of n. Let (n)_m be the falling factorial. Let f^(m)(x) denote the m-th derivative of f(x).
a(n) = lcm(A195441(n), rad(n+1)).
a(n) = lcm(a(n+1), rad(n+1)), if n >= 2 is even.
a(2n)/a(2n+1) = A286517(n), if n >= 1.
a(n) = A324370(n+1) * rad(n+1).
a(n) = rad(A064538(n)).
If n >= m >= 1, then denom(B^(m)(n,x)) = a(n-m)/gcd(a(n-m), (n)A324370(n-m+1)/gcd(A324370(n-m+1),%20(n)">m) = A324370(n-m+1)/gcd(A324370(n-m+1), (n){m-1}).
(See papers of Kellner and Kellner & Sondow.) (End)
Comments