A213615 Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in descending order of powers.
1, 2, -1, 6, -6, 1, 2, -3, 1, 0, 30, -60, 30, 0, -1, 6, -15, 10, 0, -1, 0, 42, -126, 105, 0, -21, 0, 1, 6, -21, 21, 0, -7, 0, 1, 0, 30, -120, 140, 0, -70, 0, 20, 0, -1, 10, -45, 60, 0, -42, 0, 20, 0, -3, 0, 66, -330, 495, 0, -462, 0, 330, 0, -99, 0, 5, 6, -33
Offset: 0
Examples
b(0,x) = 1 b(1,x) = 2*x - 1 b(2,x) = 6*x^2 - 6*x + 1 b(3,x) = 2*x^3 - 3*x^2 + x b(4,x) = 30*x^4 - 60*x^3 + 30*x^2 - 1 b(5,x) = 6*x^5 - 15*x^4 + 10*x^3 - x
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- Peter Luschny, The Computation and Asymptotics of the Bernoulli numbers.
Programs
-
Maple
seq(seq(coeff(denom(bernoulli(i,x))*bernoulli(i,x),x,i-j),j=0..i),i=0..12);
-
Mathematica
Flatten[Table[p = Reverse[CoefficientList[BernoulliB[n, x], x]]; (LCM @@ Denominator[p])*p, {n, 0, 10}]] (* T. D. Noe, Nov 07 2012 *)
Formula
T(n,k) = A144845(n)*[x^(n-k)]B{n}(x).
Comments