cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144849 Coefficients in the expansion of the squared sine lemniscate function.

Original entry on oeis.org

1, 6, 336, 77616, 50916096, 76307083776, 226653840838656, 1207012936807028736, 10696277678308486742016, 148900090457044541209706496, 3110043187741674836967136690176, 93885206124269301790338015801901056, 3970859549814416912519992571903015387136
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2009

Keywords

Comments

Denoted by \beta_n in Lomont and Brillhart (2011) on page xiii.
Gives the number of Increasing bilabeled strict binary trees with 4n+2 labels. - Markus Kuba, Nov 18 2014

Examples

			G.f. = 1 + 6*x + 336*x^2 + 77616*x^3 + 50916096*x^4 + ...
		

References

  • J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 86.

Crossrefs

Programs

  • Maple
    a[0]:=1; b[0]:=1;
    for n from 1 to 15 do b[n]:=add(binomial(4*n,4*j+2)*b[j]*b[n-1-j],j=0..n-1);
    a[n]:=(1/3)*add(binomial(4*n-1,4*j+1)*a[j]*b[n-1-j],j=0..n-1); od:
    tb:=[seq(b[n],n=0..15)];
  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ JacobiSD[ x, 1/2]^2, {x, 0, m}] / (2 (-3)^n)]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]]^2 / 2, {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ Binomial[ 4 n, 4 j + 2] a[j] a[ n - 1 - j], {j, 0, n - 1}]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[n < 0, 0, With[{m = 4*n + 2}, m!*SeriesCoefficient[JacobiSN[x, -1]^2, {x, 0, m}]/(2*(-12)^n)]]; (* Michael Somos, Jul 10 2024 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 4*n + 2; m! * polcoeff( (serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))))^2 / 2, m))}; /* Michael Somos, Apr 25 2011 */

Formula

E.g.f.: sl(x)^2 = 2 Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 2) / (4*k + 2)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
a(0) = 1, a(n + 1) = Sum_{j=0..n} binomial( 4*n + 4, 4*j + 2) * a(j) * a(n - j).
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b(n) = A139757(n) * n/3. - Michael Somos, Jan 03 2013
E.g.f.: Increasing bilabeled strict binary trees of 2n+2 labels (including the zeros): T(z)=Sum_{n>=1}T_n z^{2n}/(2n)! = 6/sqrt(3)*WeierstrassP(3^{-1/4}z+LemniscateConstant; g_2,g_3), with g_2=-1 and g_3=0; alternatively, T(z)=sqrt(3)*i*sl^2(z/(3^{1/4}(1+i))). - Markus Kuba, Nov 18 2014