A144482
Semiprimes that are a product of Mersenne primes.
Original entry on oeis.org
9, 21, 49, 93, 217, 381, 889, 961, 3937, 16129, 24573, 57337, 253921, 393213, 917497, 1040257, 1572861, 3670009, 4063201, 16252897, 16646017, 66584449, 67092481, 1073602561, 4294434817, 6442450941, 15032385529, 17179607041
Offset: 1
-
Take[Times@@@Tuples[2^# -1&/@MersennePrimeExponent[Range[10]],2]//Union,30] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 30 2020 *)
-
isA000668(n) = (isprime(n)&&!bitand(n,1+n));
isA144482(n) = ((2==bigomega(n))&&isA000668(vecmin(factor(n)[,1]))&&isA000668(vecmax(factor(n)[,1]))); \\ Antti Karttunen, Jun 28 2020
Original entry on oeis.org
9, 21, 93, 381, 24573, 393213, 1572861, 6442450941, 6917529027641081853, 1856910058928070412348686333, 486777830487640090174734030864381, 510423550381407695195061911147652317181
Offset: 1
A165223
Products of 2 successive Mersenne primes.
Original entry on oeis.org
21, 217, 3937, 1040257, 1073602561, 68718821377, 1125897758834689, 4951760154835678088235319297, 1427247692705959880439315947500961989719490561
Offset: 1
Boris Hostnik (megpplus(AT)siol.net), Sep 08 2009
A344780
Semiprimes that are product of two distinct Honaker primes.
Original entry on oeis.org
34453, 59867, 120191, 136109, 137419, 142921, 170431, 178291, 187723, 205801, 250603, 253223, 273257, 275887, 280471, 286933, 290951, 297763, 319771, 339421, 342163, 348853, 354617, 356189, 357499, 357943, 367193, 376879, 401777, 410947, 413173, 422999, 449723
Offset: 1
34453 = 131*263 which are distinct Honaker primes.
120191 = 263*457 which are distinct Honaker primes.
-
isA006881 := proc(n)
if numtheory[bigomega](n) =2 and A001221(n) = 2 then
true ;
else
false ;
end if;
end proc:
isA344780 := proc(n)
if isA006881(n) then
for p in ifactors(n)[2] do
if not isA033548(op(1,p)) then
return false;
end if;
end do:
true ;
else
false;
end if;
end proc:
for n from 1 do
if isA344780(n) then
printf("%d,\n",n);
end if;
end do: # R. J. Mathar, Jul 07 2021
-
fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n;
lst = {}; Do[If[Plus @@ Last /@ FactorInteger[n] == 2, a = Length[First /@ FactorInteger[n]]; If[a == 2, b = First /@ FactorInteger[n]; c = b[[1]]; d = b[[2]]; If[fHQ[c] && fHQ[d], AppendTo[lst, {n,c,d}]]]], {n, 2000000}]; lst
A346138
Sphenic numbers that are the product of Mersenne primes.
Original entry on oeis.org
651, 2667, 11811, 27559, 172011, 761763, 1777447, 2752491, 3120771, 7281799, 11010027, 12189603, 28442407, 32247967, 48758691, 49938051, 113770279, 116522119, 199753347, 466091143, 516026527, 2064117919, 3220807683, 7515217927, 12883304451, 30061043719, 33281679391, 45097156587, 133127479327
Offset: 1
a(1) = 651, since 651 = 3*7*31.
a(2) = 2667, since 2667 = 3*7*127.
a(3) = 11811, since 11811 = 3*31*127.
Showing 1-5 of 5 results.
Comments