cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144902 Expansion of x/((1-x-x^3)*(1-x)^8).

Original entry on oeis.org

0, 1, 9, 45, 166, 505, 1342, 3224, 7161, 14938, 29602, 56211, 102973, 182963, 316694, 535947, 889454, 1451305, 2333356, 3703510, 5812615, 9034001, 13921551, 21294946, 32364747, 48915873, 73576675, 110213470, 164508959, 244810154, 363371304, 538175735
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

9th column of A144903.
Cf. A099567.

Programs

  • Magma
    A144903:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+7, j+8): j in [0..Floor((n+7)/3)]]) >;
    [A144903(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(11, (i, j)-> if i=j-1 then 1 elif j=1 then [9, -36, 85, -134, 154, -140, 106, -65, 29, -8, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x/((1-x-x^3)(1-x)^8), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • SageMath
    def A144903(n): return sum(binomial(n-2*j+7, j+8) for j in (0..((n+7)//3)))
    [A144903(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^8).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+7)/3)} binomial(n-2*j+7, j+8).
a(n) = A099567(n+7, 8). (End)