cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144904 Coefficient of x^n in expansion of x/((1-x-x^3)*(1-x)^(n-1)), also diagonal of A144903.

Original entry on oeis.org

0, 1, 2, 6, 21, 76, 280, 1045, 3937, 14938, 56993, 218414, 840090, 3241153, 12537263, 48604755, 188799962, 734631798, 2862843281, 11171582151, 43647688211, 170720728344, 668414462009, 2619400928928, 10273572796046, 40325085206853, 158393604268277
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

Programs

  • Magma
    A144904:= func< n | n eq 0 select 0 else  (&+[Binomial(2*n-2*j-2, n+j-1): j in [0..Floor((n-1)/3)]]) >;
    [A144904(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
    a:= n-> A(n,n):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, n,
          ((27*n^3-150*n^2+195*n-12)*a(n-1)
          -(66*n^3-382*n^2+492*n+124)*a(n-2)
          +(27*n^3-156*n^2+201*n+48)*a(n-3)
          -2*(2*n-7)*(3*n^2-7*n-2)*a(n-4))/((n-1)*(3*n^2-13*n+8)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 06 2013
  • Mathematica
    Table[Sum[Binomial[2*n-2*j-2, n+j-1], {j,0,Floor[(n-1)/3]}], {n,0,40}] (* G. C. Greubel, Jul 27 2022 *)
  • SageMath
    def A144904(n): return sum(binomial(2*n-2*j-2, n+j-1) for j in (0..((n-1)//3)))
    [A144904(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

a(n) = [x^n] x/((1-x-x^3)*(1-x)^(n-1)).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n-1)/3)} binomial(2*n-2*j-2, n+j-1).
a(n) = A099567(2*n, n). (End)
a(n) = binomial(2*(n-1), n-1)*hypergeom([1, (1-n)/3, (2-n)/3, 1-n/3], [1-n, 3/2-n, n], -27/4) for n > 0. - Stefano Spezia, Apr 06 2024
a(n) ~ 4^n/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 08 2024