A144904 Coefficient of x^n in expansion of x/((1-x-x^3)*(1-x)^(n-1)), also diagonal of A144903.
0, 1, 2, 6, 21, 76, 280, 1045, 3937, 14938, 56993, 218414, 840090, 3241153, 12537263, 48604755, 188799962, 734631798, 2862843281, 11171582151, 43647688211, 170720728344, 668414462009, 2619400928928, 10273572796046, 40325085206853, 158393604268277
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Magma
A144904:= func< n | n eq 0 select 0 else (&+[Binomial(2*n-2*j-2, n+j-1): j in [0..Floor((n-1)/3)]]) >; [A144904(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
Maple
A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end: a:= n-> A(n,n): seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember; `if`(n<3, n, ((27*n^3-150*n^2+195*n-12)*a(n-1) -(66*n^3-382*n^2+492*n+124)*a(n-2) +(27*n^3-156*n^2+201*n+48)*a(n-3) -2*(2*n-7)*(3*n^2-7*n-2)*a(n-4))/((n-1)*(3*n^2-13*n+8))) end: seq(a(n), n=0..30); # Alois P. Heinz, Jun 06 2013
-
Mathematica
Table[Sum[Binomial[2*n-2*j-2, n+j-1], {j,0,Floor[(n-1)/3]}], {n,0,40}] (* G. C. Greubel, Jul 27 2022 *)
-
SageMath
def A144904(n): return sum(binomial(2*n-2*j-2, n+j-1) for j in (0..((n-1)//3))) [A144904(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
Formula
a(n) = [x^n] x/((1-x-x^3)*(1-x)^(n-1)).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n-1)/3)} binomial(2*n-2*j-2, n+j-1).
a(n) = A099567(2*n, n). (End)
a(n) = binomial(2*(n-1), n-1)*hypergeom([1, (1-n)/3, (2-n)/3, 1-n/3], [1-n, 3/2-n, n], -27/4) for n > 0. - Stefano Spezia, Apr 06 2024
a(n) ~ 4^n/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 08 2024