cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144925 Number of nontrivial divisors of the n-th composite number.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 3, 4, 4, 2, 2, 6, 1, 2, 2, 4, 6, 4, 2, 2, 2, 7, 2, 2, 6, 6, 4, 4, 2, 8, 1, 4, 2, 4, 6, 2, 6, 2, 2, 10, 2, 4, 5, 2, 6, 4, 2, 6, 10, 2, 4, 4, 2, 6, 8, 3, 2, 10, 2, 2, 2, 6, 10, 2, 4, 2, 2, 2, 10, 4, 4, 7, 6, 6, 6, 2, 10, 6, 2, 8, 6, 2, 4, 4, 2, 2, 14, 1, 2, 2, 4, 2, 10, 6, 2, 6
Offset: 1

Views

Author

Huen Yeong Kong (cosmology(AT)pacific.net.sg), Sep 25 2008

Keywords

Comments

1 and the number itself are excluded as divisors.
First occurrence of k: 1, 2, 9, 6, 45, 14, 24, 32, 851, 42, 3531, 148, 109, 89, 58993, 138, ..., which corresponds to the composite number (A005179): 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, ..., . - Robert G. Wilson v, Aug 30 2009
Row lengths of table in A163870. - Reinhard Zumkeller, Mar 29 2014

Crossrefs

Programs

  • Haskell
    a144925 = length . a163870_row  -- Reinhard Zumkeller, Mar 29 2014
  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi@# + 1 &, n + PrimePi@n + 1]; f[n_] := DivisorSigma[0, n] - 2; Table[f@ Composite@ n, {n, 101}] (* Robert G. Wilson v, Aug 30 2009 *)
    DivisorSigma[0,#]-2&/@Select[Range[300],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 15 2018 *)
  • PARI
    k=1;vector(120,n,while(isprime(k++),0);numdiv(k)-2)
    

Formula

a(n) = A070824(A002808(n)) = A000005(A002808(n)) - 2.
A144925(n) = A070824(A002808(n)) = A000005(A002808(n)) - 2. - Robert G. Wilson v, Aug 30 2009

Extensions

Sequence extended by Juri-Stepan Gerasimov, Aug 05 2009
Edited and extended by Franklin T. Adams-Watters, Aug 30 2009