cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A167131 Numbers k such that A002808(k) - A144925(k) is prime.

Original entry on oeis.org

1, 8, 9, 12, 21, 24, 26, 30, 38, 44, 45, 49, 53, 61, 66, 81, 84, 86, 97, 100, 106, 109, 116, 121, 131, 140, 154, 165, 183, 189, 191, 198, 203, 205, 208, 216, 232, 245, 252, 257, 270, 283, 290, 305, 308, 310, 313, 323, 325, 330, 340, 342, 358, 363, 367, 377, 388
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 28 2009

Keywords

Crossrefs

Programs

Extensions

Edited (but not checked) by N. J. A. Sloane, Nov 01 2009
105 replaced with 106 and sequence extended by R. J. Mathar, Nov 02 2009

A163870 Triangle read by rows: row n lists the nontrivial divisors of the n-th composite.

Original entry on oeis.org

2, 2, 3, 2, 4, 3, 2, 5, 2, 3, 4, 6, 2, 7, 3, 5, 2, 4, 8, 2, 3, 6, 9, 2, 4, 5, 10, 3, 7, 2, 11, 2, 3, 4, 6, 8, 12, 5, 2, 13, 3, 9, 2, 4, 7, 14, 2, 3, 5, 6, 10, 15, 2, 4, 8, 16, 3, 11, 2, 17, 5, 7, 2, 3, 4, 6, 9, 12, 18, 2, 19, 3, 13, 2, 4, 5, 8, 10, 20, 2, 3, 6, 7, 14, 21, 2, 4, 11, 22, 3, 5, 9, 15, 2, 23
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 06 2009

Keywords

Comments

Row n contains row A002808(n) of table A027750.
T(n,k) = A027751(A002808(n),k+1), k = 1..A144925(n). - Reinhard Zumkeller, Mar 29 2014

Examples

			The table starts in row n=1 (with the composite 4) as
  2;
  2,3;
  2,4;
  3;
  2,5;
  2,3,4,6;
  2,7;
  3,5;
  2,4,8;
  2,3,6,9;
  2,4,5,10.
		

Crossrefs

Cf. A144925 (row lengths), A062825 (row sums), A056608 (left edge), A160180 (right edge).

Programs

  • Haskell
    a163870 n k = a163870_tabf !! (n-1) !! (k-1)
    a163870_row n = a163870_tabf !! (n-1)
    a163870_tabf = filter (not . null) $ map tail a027751_tabf
    -- Reinhard Zumkeller, Mar 29 2014
    
  • Mathematica
    Divisors[Select[Range[50], CompositeQ]][[All, 2 ;; -2]] (* Paolo Xausa, Dec 26 2024 *)
  • Python
    from itertools import islice
    def g():
        n, j = 1, 2
        while True:
            n = (n << 1) | 1
            p = 1
            for k in range(2, (j >> 1) + 1):
                p = (p << 1) | 1
                if n % p == 0: yield k
            j+=1
    print(list(islice(g(),95))) # DarĂ­o Clavijo, Dec 16 2024

Extensions

Entries checked by R. J. Mathar, Sep 22 2009

A160180 Largest proper divisor of the n-th composite number.

Original entry on oeis.org

2, 3, 4, 3, 5, 6, 7, 5, 8, 9, 10, 7, 11, 12, 5, 13, 9, 14, 15, 16, 11, 17, 7, 18, 19, 13, 20, 21, 22, 15, 23, 24, 7, 25, 17, 26, 27, 11, 28, 19, 29, 30, 31, 21, 32, 13, 33, 34, 23, 35, 36, 37, 25, 38, 11, 39, 40, 27, 41, 42, 17, 43, 29, 44, 45, 13, 46, 31, 47, 19, 48, 49, 33, 50, 51, 52
Offset: 1

Views

Author

Kyle Stern, May 03 2009, May 04 2009

Keywords

Comments

Old name: The n-th positive composite number divided by its lowest nontrivial factor.

Examples

			a(1) = 4/2 = 2, a(2) = 6/2 = 3, a(3) = 8/2 = 4, a(4) = 9/3 = 3, a(5) = 10/2 = 5.
		

Crossrefs

Programs

  • Haskell
    a160180 = a032742 . a002808  -- Reinhard Zumkeller, Mar 29 2014
  • MATLAB
    function [a] = A160180(k) j = 0; n = 1; while j < k if isprime(n) == 1 skip elseif isprime(n) == 0 j = j + 1; factors = factor(n); lowfactor = factors(1,1); a(j,1) = n/lowfactor; end n = n + 1; end - Kyle Stern, May 04 2009
    
  • Mathematica
    f[n_] := Block[{k = n + PrimePi@ n + 1}, While[k != n + PrimePi@ k + 1, k++ ]; k/FactorInteger[k][[1, 1]]]; Array[f, 75] (* Robert G. Wilson v, May 11 2012 *)
    Divisors[#][[-2]]&/@Select[Range[200],CompositeQ] (* Harvey P. Dale, Dec 06 2021 *)
    (# / FactorInteger[#][[1, 1]])& /@ Select[Range[300], CompositeQ] (* Amiram Eldar, Jun 18 2022 *)

Formula

a(n) = A032742(A002808(n)) = A002808(n) / A056608(n) = A163870(n,A144925(n)). - Reinhard Zumkeller, Mar 29 2014

Extensions

Indices of b-file corrected, more terms added using b-file. - N. J. A. Sloane, Aug 31 2009
New name from Reinhard Zumkeller, Mar 29 2014
Incorrect formula removed by Ridouane Oudra, Oct 15 2021

A081619 Numbers whose divisors can be arranged as equilateral triangle.

Original entry on oeis.org

1, 4, 9, 12, 18, 20, 25, 28, 32, 44, 45, 48, 49, 50, 52, 63, 68, 75, 76, 80, 92, 98, 99, 112, 116, 117, 121, 124, 144, 147, 148, 153, 162, 164, 169, 171, 172, 175, 176, 188, 207, 208, 212, 236, 242, 243, 244, 245, 261, 268, 272, 275, 279, 284, 289, 292, 304, 316
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 24 2003

Keywords

Comments

A000005(a(n))=A000217(m) for some m; A000005(A081620(n))=n*(n+1)/2.
Unit together with natural numbers n with number of nontrivial divisors equal to a perfect power. - Juri-Stepan Gerasimov, Oct 30 2009
This is wrong, e.g. a(29)=144, A000005(144)=15 and A075802(15-2)=0, see also example. - Reinhard Zumkeller, Jul 12 2013

Examples

			n = 48, A000005(48) = 10, A010054(10) = 1 or A000217(4) = 10:
.            1
.          2   3
.        4   6   8
.     12  16  24  48     therefore 48 is a term: a(12) = 48;
n = 144, A000005(144) = 15, A010054(15) = 1 or A000217(5) = 15:
.             1
.           2   3
.         4   6   8
.       9  12  16  18
.    24  36  48  72  144    therefore 48 is a term: a(29) = 144.
		

Crossrefs

Programs

  • Haskell
    a081619 n = a081619_list !! (n-1)
    a081619_list = filter ((== 1) . a010054 . a000005) [1..]
    -- Reinhard Zumkeller, Jul 12 2013
    
  • PARI
    is(n)=ispolygonal(numdiv(n),3) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A010054(A000005(n)) = 1. - Reinhard Zumkeller, Jul 12 2013

Extensions

Example revised and extended by Reinhard Zumkeller, Jul 12 2013

A259981 Let b be the n-th composite number, A002808(n); a(n) is number of base-b digits x,y,z such that (xb+y)/(zb+x)=y/z.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 2, 6, 7, 4, 4, 10, 6, 6, 6, 4, 6, 10, 6, 4, 8, 6, 6, 21, 2, 6, 18, 6, 4, 18, 10, 8, 10, 10, 12, 12, 6, 16, 22, 14, 6, 10, 2, 12, 21, 12, 20, 4, 10, 22, 10, 2, 12, 20, 14, 24, 8, 24, 8, 10, 28, 6, 6, 18, 10, 28, 16, 10, 6, 6, 30, 4, 24, 37, 6, 6, 46, 14, 10, 6, 18, 24, 6, 18
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2015, following a suggestion from R. P. Boas, May 19 1974

Keywords

Comments

R. P. Boas writes (slightly edited): The problem originated in the rather silly observation that 64/16 = 4/1 ("cancel" the 6's). I once asked what happens in base b, i.e., when is (xb+y)/(zb+x) = y/z? There are no nontrivial instances of the cancellation phenomenon when b is prime, so we restrict b to A002808; the sequence gives the number of instances of the phenomenon for each composite b. When b-1 is prime the only instances have x=b-1 and the number of them is the number of proper divisors of b (see A144925). A259983 is the subsequence of this sequence corresponding to bases b in A005381.

Crossrefs

Programs

  • Mathematica
    Table[Count[Flatten[Table[(x b + y) z == y (z b + x), {x, b}, {y, b}, {z, y - 1}], 2], True], {b, Select[Range[115], CompositeQ]}] (* Eric W. Weisstein, Oct 16 2015 *)
  • Python
    from sympy import primepi
    def A002808(n):
        m = n
        while m != primepi(m) + 1 + n:
            m += 1
        return m
    def A259981(n):
        b, c = A002808(n), 0
        for x in range(1,b):
            for y in range(1,b):
                if x != y:
                    w = b*(x-y)
                    for z in range(1,b):
                        if x != z:
                            if z*w == y*(x-z):
                                c += 1
        return c # Chai Wah Wu, Jul 15 2015

Extensions

Typo in a(61) corrected by Chai Wah Wu, Jul 15 2015

A163838 a(n) = (n-th composite) * (number of nontrivial divisors of n-th composite).

Original entry on oeis.org

4, 12, 16, 9, 20, 48, 28, 30, 48, 72, 80, 42, 44, 144, 25, 52, 54, 112, 180, 128, 66, 68, 70, 252, 76, 78, 240, 252, 176, 180, 92, 384, 49, 200, 102, 208, 324, 110, 336, 114, 116, 600, 124, 252, 320, 130, 396, 272, 138, 420, 720, 148, 300, 304, 154, 468, 640, 243
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 05 2009, Aug 06 2009

Keywords

Comments

The trivial divisors of the n-th composite are 1 and the n-th composite.

Examples

			a(1) =  4 (= 4*1);
a(2) = 12 (= 6*2);
a(3) = 16 (= 8*2);
a(4) =  9 (= 9*1);
a(5) = 20 (= 10*2);
a(6) = 48 (= 12*4).
		

Crossrefs

Programs

  • Maple
    A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc: A070824 := proc(n) numtheory[tau](n)-2 ; end: A144925 := proc(n) A070824(A002808(n)) ; end: A163838 := proc(n) A144925(n)*A002808(n) ; end: seq(A163838(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
  • Mathematica
    # (DivisorSigma[0,#]-2)&/@Select[Range[100],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 23 2021 *)

Formula

a(n) = A002808(n)*A144925(n).

Extensions

56 replaced with 112, 310 replaced with 320, and 468 inserted by R. J. Mathar, Oct 10 2009

A228363 Sorted entries of the multiplication table a*b, with a>1, b>1.

Original entry on oeis.org

4, 6, 6, 8, 8, 9, 10, 10, 12, 12, 12, 12, 14, 14, 15, 15, 16, 16, 16, 18, 18, 18, 18, 20, 20, 20, 20, 21, 21, 22, 22, 24, 24, 24, 24, 24, 24, 25, 26, 26, 27, 27, 28, 28, 28, 28, 30, 30, 30, 30, 30, 30, 32, 32, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 36, 36, 36, 38, 38, 39, 39, 40, 40, 40, 40
Offset: 1

Views

Author

Ralf Stephan, Aug 21 2013

Keywords

Comments

Consists of the composite numbers (A002808), with the composite nonsquares (A089229) occurring more than once, i.e., the n-th composite appears A144925(n) times.
A complement of the primes (A000040).

Crossrefs

Cf. A061017 (sorted entries of standard multiplication table)

Programs

  • PARI
    L=listcreate();for(k=2,250,for(l=2,250,listput(L,k*l)));v=vecsort(Vec(L));for(n=1,100,print1(v[n],","))

A228372 Number of nontrivial divisors in the first n composites.

Original entry on oeis.org

1, 3, 5, 6, 8, 12, 14, 16, 19, 23, 27, 29, 31, 37, 38, 40, 42, 46, 52, 56, 58, 60, 62, 69, 71, 73, 79, 85, 89, 93, 95, 103, 104, 108, 110, 114, 120, 122, 128, 130, 132, 142, 144, 148, 153, 155, 161, 165, 167, 173, 183, 185, 189, 193, 195, 201, 209, 212, 214, 224, 226
Offset: 1

Views

Author

Ralf Stephan, Aug 21 2013

Keywords

Comments

Also, positions where values change in A228363.
Partial sums of A144925.

Programs

  • Mathematica
    Accumulate[DivisorSigma[0,#]-2&/@Select[Range[100],CompositeQ]] (* Harvey P. Dale, Nov 10 2017 *)
  • PARI
    L=listcreate();for(n=1,1000,if(!isprime(n),listput(L,n)));co=Vec(L);s=0;for(n=2,100,s=s+numdiv(co[n])-2;print1(s,","))
Showing 1-8 of 8 results.