cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145016 Primes p of the form 4k+1 for which p - floor(sqrt(p))^2 is a square.

Original entry on oeis.org

5, 13, 17, 29, 37, 53, 73, 97, 101, 109, 137, 173, 197, 229, 241, 257, 281, 293, 349, 397, 401, 409, 457, 509, 577, 601, 641, 661, 677, 701, 733, 809, 857, 877, 977, 997, 1033, 1049, 1093, 1153, 1181, 1229, 1289, 1297, 1321, 1373, 1433, 1453, 1493, 1601, 1609
Offset: 1

Views

Author

Vladimir Shevelev, Sep 29 2008

Keywords

Comments

If a(n) = x^2 + y^2 then y = floor(sqrt(a(n))) and by a well known Euler theorem, the representation is unique.
Odd primes p = x^2 + y^2 such that y > x^2/2. - Thomas Ordowski, Aug 16 2014

Crossrefs

Subsequence of A002144 (Pythagorean primes).

Programs

  • Maple
    filter:= p -> isprime(p) and issqr(p - floor(sqrt(p))^2):
    select(filter, [seq(p,p=1..10000,4)]); # Robert Israel, Dec 04 2018
  • Mathematica
    okQ[n_]:=PrimeQ[n]&&IntegerQ[Sqrt[n-Floor[Sqrt[n]]^2]]; Select[4Range[500]+1,okQ]  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    isok(p) = isprime(p) && ((p%4) == 1) && issquare(p - sqrtint(p)^2); \\ Michel Marcus, Dec 04 2018