cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145066 Partial sums of A002522, starting at n=1.

Original entry on oeis.org

2, 7, 17, 34, 60, 97, 147, 212, 294, 395, 517, 662, 832, 1029, 1255, 1512, 1802, 2127, 2489, 2890, 3332, 3817, 4347, 4924, 5550, 6227, 6957, 7742, 8584, 9485, 10447, 11472, 12562, 13719, 14945, 16242, 17612, 19057, 20579, 22180, 23862, 25627
Offset: 1

Views

Author

Keywords

Examples

			a(2) = a(1) + 2^2 + 1 = 2 + 4 + 1 = 7; a(3) = a(2) + 3^2 + 1 = 7 + 9 + 1 = 17.
		

Crossrefs

Cf. A002522 (n^2 + 1), A005563 ((n+1)^2 - 1), A051925 (zero followed by partial sums of A005563), A081489 (partial sums of A002522 starting at n=0).

Programs

  • Mathematica
    Accumulate[Range[50]^2+1] (* Harvey P. Dale, Dec 07 2016 *)
  • PARI
    {a=0; for(n=1, 42, print1(a=a+n^2+1, ","))}
    
  • Python
    def A145066(n): return (n*(n*(2*n + 3) + 1))//6 + n # Chai Wah Wu, Oct 30 2024

Formula

a(1) = 2; a(n) = a(n-1) + n^2 + 1 for n > 1.
From Christoph Pacher (christoph.pacher(AT)ait.ac.at), Jul 23 2010: (Start)
a(n) = Sum_{k=1..n} (k^2 + 1).
a(n) = A000330(n) + n.
a(n) = n*(n+1)*(2*n+1)/6 + n. (End)
G.f.: x*(2-x+x^2)/(1-x)^4. - Colin Barker, Apr 04 2012
E.g.f.: (1/6)*x*(12 + 9*x + 2*x^2)*exp(x). - G. C. Greubel, Jul 22 2017
a(n) = A081489(n+1) - 1. - Jianing Song, Oct 10 2021

Extensions

Edited by Klaus Brockhaus, Oct 17 2008