cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145126 a(n) = 1 + (6 + (11 + (6 + n)*n)*n)*n/24.

Original entry on oeis.org

1, 2, 6, 16, 36, 71, 127, 211, 331, 496, 716, 1002, 1366, 1821, 2381, 3061, 3877, 4846, 5986, 7316, 8856, 10627, 12651, 14951, 17551, 20476, 23752, 27406, 31466, 35961, 40921, 46377, 52361, 58906, 66046, 73816, 82252, 91391, 101271, 111931, 123411, 135752
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Comments

From Gary W. Adamson, Jul 31 2010: (Start)
Equals (1, 2, 3, 4, 5, ...) convolved with (1, 0, 3, 6, 10, 15, ...).
Example: a(4) = 36 = (5, 4, 3, 2, 1) dot (1, 0, 3, 6, 10) = (5 + 0 + 9 + 12 + 10). (End)
Also the number of permutations of length n that can be sorted by a single block interchange (in the sense of Christie). - Vincent Vatter, Aug 21 2013

Crossrefs

5th row of A145153. See row 5 of A145140/A145141 for rational coefficients and A145142 for 24 * coefficients of polynomial.

Programs

  • Maple
    a:= n-> 1+ (6+ (11+ (6+ n) *n) *n) *n/24: seq(a(n), n=0..40);
    # second Maple program:
    with(combinat): seq(binomial(n+3, 4)+1, n=0..40); # Zerinvary Lajos, Mar 24 2009
  • Mathematica
    a=b=s=0;lst={a};Do[a+=n;b+=a;s+=b;AppendTo[lst,s],{n,6!}];lst+1 (* Vladimir Joseph Stephan Orlovsky, Jun 14 2009 *)
    CoefficientList[Series[(x^4 - 4 x^3 + 6 x^2 - 3 x + 1) / (1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • PARI
    Vec((x^4-4*x^3+6*x^2-3*x+1)/(1-x)^5 + O(x^50)) \\ Altug Alkan, Nov 24 2015

Formula

G.f.: (x^4-4*x^3+6*x^2-3*x+1) / (1-x)^5.
a(n) = C(n+3,4)+1. - Zerinvary Lajos, Mar 24 2009