cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145180 Continued cotangent recurrence a(n+1) = a(n)^3 + 3*a(n) and a(1) = 6.

Original entry on oeis.org

6, 234, 12813606, 2103846732371087589834, 9311985549495522884757461748592522243432897275494229148348315206
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1) = a(n)3 + 3*a(n) and a(1)=k is following:
a(n) = Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))].
The next term (a(6)) has 192 digits. - Harvey P. Dale, Mar 09 2013

Crossrefs

Programs

  • Mathematica
    a = {}; k = 6; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((6 + Sqrt[40])/2)^(3^(n - 1))], {n, 1, 5}] (* Artur Jasinski *)
    NestList[#^3+3#&,6,5] (* Harvey P. Dale, Mar 09 2013 *)

Formula

a(n+1)=a(n)^3 + 3*a(n) and a(1)=6
a(n)=Floor[((6+Sqrt[6^2+4])/2)^(3^(n-1))]
a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. See A002813. - Peter Bala, Nov 23 2012