A145180 Continued cotangent recurrence a(n+1) = a(n)^3 + 3*a(n) and a(1) = 6.
6, 234, 12813606, 2103846732371087589834, 9311985549495522884757461748592522243432897275494229148348315206
Offset: 1
Links
- J. Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.
- Eric W. Weisstein, MathWorld: Lehmer Cotangent Expansion
Crossrefs
Programs
-
Mathematica
a = {}; k = 6; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a or Table[Floor[((6 + Sqrt[40])/2)^(3^(n - 1))], {n, 1, 5}] (* Artur Jasinski *) NestList[#^3+3#&,6,5] (* Harvey P. Dale, Mar 09 2013 *)
Formula
a(n+1)=a(n)^3 + 3*a(n) and a(1)=6
a(n)=Floor[((6+Sqrt[6^2+4])/2)^(3^(n-1))]
a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. See A002813. - Peter Bala, Nov 23 2012
Comments