cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145234 a(n) = Fibonacci(7^n).

Original entry on oeis.org

1, 13, 7778742049, 215414832505658809004682396169711233230800418578767753330908886771798637
Offset: 0

Views

Author

Artur Jasinski, Oct 05 2008

Keywords

Crossrefs

Cf. A000045.
Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), A145231 (k=4), A145232 (k=5), A145233 (k=6), this sequence (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Magma
    [Fibonacci(7^n): n in [0..5]]; // Vincenzo Librandi, Apr 02 2011
  • Maple
    A145234 := proc(n) combinat[fibonacci](7^n) ; end proc:
    seq(A145234(n),n=1..3) ; # R. J. Mathar, Apr 01 2011
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(7^n) - (1 - G)^(7^n))/Sqrt[5]], {n, 1, 6}]
    (* Second program: *)
    Table[Round[N[(2/Sqrt[5])*Cosh[7^n*ArcCosh[Sqrt[5]/2]], 1000]], {n, 1, 4}]

Formula

a(n) = (G^(7^n) - (1 - G)^(7^n))/sqrt(5) where G = (1 + sqrt(5))/2.
a(n) = (2/sqrt(5))*cosh(7^n*arccosh(sqrt(5)/2)).
a(n+1) = 125*a(n)^7 - 175*a(n)^5 + 70*a(n)^3 - 7*a(n) with a(0) = 1. - Peter Bala, Nov 25 2022