cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145469 Positive integers k such that d(k) = d(k-1) + d(k-2), where d(k) is the number of divisors of k.

Original entry on oeis.org

12, 30, 40, 54, 63, 75, 80, 88, 135, 156, 165, 174, 208, 255, 260, 279, 285, 318, 328, 368, 372, 405, 423, 455, 460, 483, 490, 495, 546, 550, 552, 555, 585, 654, 726, 732, 750, 795, 836, 846, 870, 915, 935, 940, 952, 996, 1012, 1048, 1068, 1148, 1173, 1196
Offset: 1

Views

Author

Leroy Quet, Oct 11 2008

Keywords

Crossrefs

Cf. A145470.

Programs

  • Magma
    [n:n in [3..1500]| NumberOfDivisors(n-1)+NumberOfDivisors(n-2) eq NumberOfDivisors(n)]; // Marius A. Burtea, May 08 2019
    
  • Maple
    with(numtheory): a:=proc(n) if tau(n)=tau(n-1)+tau(n-2) then n else end if end proc: seq(a(n),n=3..1300); # Emeric Deutsch, Oct 23 2008
  • Mathematica
    Select[Range[1200],DivisorSigma[0,#]==DivisorSigma[0,#-1]+ DivisorSigma[ 0, #-2]&] (* Harvey P. Dale, Jan 26 2013 *)
  • PARI
    isok(n) = (n>2) && (numdiv(n) == numdiv(n-1) + numdiv(n-2)); \\ Michel Marcus, May 08 2019

Extensions

Extended by Emeric Deutsch, Oct 23 2008
Name edited by Jon E. Schoenfield, May 08 2019

A175116 A positive integer k is included if d(k) = d(k+1) * d(k+2), where d(k) is the number of divisors of k.

Original entry on oeis.org

96, 105, 165, 216, 280, 315, 345, 357, 408, 465, 522, 552, 561, 616, 624, 640, 696, 744, 760, 837, 861, 885, 920, 924, 945, 990, 1032, 1056, 1128, 1185, 1281, 1302, 1368, 1386, 1416, 1464, 1560, 1640, 1785, 1830, 1860, 1905, 1950, 2037, 2142, 2184, 2296
Offset: 1

Views

Author

Leroy Quet, Feb 13 2010

Keywords

Comments

Terms calculated by M. F. Hasler.

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Range[3000],3,1],DivisorSigma[0,First[#]]== DivisorSigma[0,Last[#]]DivisorSigma[0,#[[2]]]&]][[1]]  (* Harvey P. Dale, Apr 08 2011 *)
Showing 1-2 of 2 results.