cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A291126 Psibonacci numbers: solutions n of the equation psi(n) = psi(n-1) + psi(n-2), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

3, 6, 210, 88200, 101970, 193290, 289680, 993990, 11264550, 59068230, 72776970, 98746230, 122460690, 126500910, 132766770, 234150930, 514442214, 531391650, 638082390, 650428020, 790769790, 1249160790, 3727074450, 4775972850, 8299675650, 9530202210
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

Analogous to phibonacci numbers (A065557) and other sequences (see crossrefs).

Examples

			psi(210) = 576 = 240 + 336 = psi(209) + psi(208), therefore 210 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    psi[n_]:=If[n < 1, 0, n Sum[ MoebiusMu[ d]^2 / d, {d, Divisors @ n}]];
    Select[Range[10^6], psi[#]==psi[#-1]+psi[#-2] &]

Extensions

a(21)-a(26) from Giovanni Resta, Aug 26 2018

A291176 Numbers k such that s(k) = s(k-1) + s(k-2), where s(k) is the sum of proper divisors of k (A001065).

Original entry on oeis.org

3, 8, 20, 146139, 584835, 44814015, 1436395095, 9988999095, 25997557299, 193861767939, 2105722150095, 3921293253003, 8234992646643
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

a(14) > 10^13. - Giovanni Resta, Feb 25 2020

Examples

			s(146139) = 76581 = 75802 + 779 = s(146138) + s(146137), therefore 146139 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    s[n_]:=DivisorSigma[1,n]-n; Select[Range[10^6], s[#]==s[#-1]+s[#-2] &]

Extensions

a(7)-a(10) from Giovanni Resta, Aug 29 2017
a(11)-a(13) from Giovanni Resta, Feb 25 2020

A145470 A positive integer k is included if d(k) = d(k+1) + d(k+2), where d(k) is the number of divisors of k.

Original entry on oeis.org

12, 30, 42, 45, 56, 66, 112, 220, 261, 282, 294, 297, 308, 342, 364, 390, 416, 477, 492, 513, 516, 532, 536, 555, 567, 572, 580, 620, 621, 632, 651, 700, 705, 768, 777, 786, 795, 812, 832, 836, 860, 880, 884, 891, 897, 906, 957, 975, 976, 981, 992, 1000, 1005
Offset: 1

Views

Author

Leroy Quet, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Range[1010], 3, 1], DivisorSigma[0, First[#]] == DivisorSigma[0, Last[#]] + DivisorSigma[0, #[[2]]]&]][[1]] (* Amiram Eldar, Jul 17 2019 after Harvey P. Dale at A175116 *)

Extensions

Extended by Ray Chandler, Oct 27 2008

A175115 An integer k, k >=3, is included if d(k) = d(k-1)*d(k-2), where d(k) is the number of divisors of k.

Original entry on oeis.org

3, 24, 120, 150, 195, 216, 294, 312, 399, 440, 459, 525, 540, 558, 570, 615, 630, 663, 693, 696, 744, 759, 774, 858, 999, 1032, 1095, 1125, 1152, 1176, 1239, 1350, 1455, 1470, 1494, 1608, 1624, 1659, 1664, 1710, 1725, 1734, 1785, 1860, 1880, 1896, 1914
Offset: 1

Views

Author

Leroy Quet, Feb 13 2010

Keywords

Comments

Terms calculated by M. F. Hasler.

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Range[2000], 3, 1], DivisorSigma[0, Last[#]] == DivisorSigma[0, First[#]] * DivisorSigma[0, #[[2]]]&]][[1]] + 2 (* Amiram Eldar, Jul 17 2019 after Harvey P. Dale at A175116 *)

A332973 Solutions k of the equation usigma(k) = usigma(k-1) + usigma(k-2) where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

3, 42, 188970, 998670, 51670374, 91397154, 236280786, 259172826, 792554574, 1106710914, 1468869930, 1957827498, 2467823442, 2496238590, 3324585210, 4055970282, 4183629690, 4384566870, 13479861630, 20681058270, 29343074178, 43449285210, 68705958690, 71418085926
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			42 is a term since s(42) = 96 and s(40) + s(41) = 54 + 42 = 96.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[3, 10^8], usigma[#] == usigma[# - 1] + usigma[# - 2] &]
  • PARI
    usigma(k) = sumdivmult(k, d, if(gcd(d, k/d)==1, d)); \\ A034448
    isok(k) = usigma(k) == usigma(k-1) + usigma(k-2); \\ Jinyuan Wang, Mar 08 2020

Extensions

Terms a(22) and beyond from Giovanni Resta, Mar 10 2020

A332975 Solutions k of the equation isigma(k) = isigma(k-1) + isigma(k-2) where isigma(k) is the sum of the infinitary divisors of k (A049417).

Original entry on oeis.org

3, 24, 360, 5016, 28440, 42066, 50568, 60456, 187176, 998670, 1454706, 12055512, 14365608, 25726728, 27896424, 51670374, 91702962, 141084774, 236280786, 249854952, 386668344, 439362504, 792554574, 1115866152, 1931976696, 2467823442, 2496238590, 2655297558, 2715505440
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &]

A291175 Numbers k such that lambda(k) = lambda(k-1) + lambda(k-2), where lambda(k) is Carmichael lambda function (A002322).

Original entry on oeis.org

3, 5, 7, 11, 13, 22, 46, 371, 717, 1379, 1436, 1437, 3532, 5146, 12209, 35652, 45236, 58096, 93932, 130170, 263589, 327095, 402056, 680068, 808303, 814453, 870689, 991942, 1178628, 1670065, 1686526, 2041276, 2319102, 2324004, 3869372, 4290742, 4449280
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Examples

			lambda(717) = 238 = 178 + 60 = lambda(716) + lambda(715), therefore 717 is in the sequence.
		

Crossrefs

Programs

A332971 Infinitary phibonacci numbers: solutions k of the equation iphi(k) = iphi(k-1) + iphi(k-2) where iphi(k) is an infinitary analog of Euler's phi function (A091732).

Original entry on oeis.org

3, 4, 7, 23, 121, 2857, 5699, 6377, 9179, 46537, 63209, 244967, 654497, 1067873, 1112009, 3435929, 3831257, 6441593, 7589737, 7784507, 8149751, 14307856, 22434089, 24007727, 24571871, 44503417, 44926463, 56732729, 128199059, 140830367, 190145936, 401767631, 403152737
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			7 is a term since iphi(7) = 6 and iphi(5) + iphi(6) = 4 + 2 = 6.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], 1])); iphi[1] = 1; iphi[n_] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) - 1); Select[Range[3, 10^5], iphi[#] == iphi[# - 1] + iphi[# - 2] &]

A332972 Solutions k of the equation cototient(k) = cototient(k-1) + cototient(k-2) where cototient(k) is A051953.

Original entry on oeis.org

3, 4, 105, 165, 195, 2205, 2835, 38805, 131145, 407925, 936495, 1025505, 1231425, 1276905, 1788255, 1925565, 2521695, 2792145, 2847585, 3289935, 5003745, 5295885, 5710089, 6315309, 6986889, 13496385, 17168085, 19210065, 20171385, 22348365, 26879685, 27798705
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			3 is a term since cototient(3) = 1 and cototient(1) + cototient(2) = 0 + 1 = 1.
105 is a term since cototient(105) = 57 and cototient(103) + cototient(104) = 1 + 56 = 57.
		

Crossrefs

Programs

  • Mathematica
    cotot[n_] := n - EulerPhi[n]; Select[Range[3, 10^6], cotot[#] == cotot[# - 1] + cotot[# - 2] &]

A332974 Solutions k of the equation s(k) = s(k-1) + s(k-2) where s(k) = usigma(k) - k is the sum of proper unitary divisors of k (A063919).

Original entry on oeis.org

3, 21, 321, 1257, 3237, 146139, 268713, 584835, 26749089, 9988999095, 25997557299, 54449485353, 935628578283, 2105722150095, 3921293253003, 8234992646643
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Comments

a(17) > 10^13. - Giovanni Resta, May 09 2020

Examples

			21 is a term since s(21) = 11 and s(19) + s(20) = 1 + 10 = 11.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); s[n_] := usigma[n] - n; Select[Range[3, 6*10^5], s[#] == s[# - 1] + s[# - 2] &]

Extensions

a(12)-a(16) from Giovanni Resta, May 09 2020
Showing 1-10 of 11 results. Next