cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A145479 Primes p such that (31+p)/2 is prime.

Original entry on oeis.org

3, 7, 31, 43, 103, 127, 163, 223, 271, 283, 331, 367, 523, 631, 643, 727, 787, 811, 883, 967, 1051, 1063, 1123, 1171, 1231, 1291, 1423, 1447, 1471, 1483, 1543, 1627, 1723, 1783, 1951, 1987, 2011, 2143, 2203, 2311, 2371, 2467, 2551, 2731, 2767, 2887, 3067
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Comments

All terms are congruent to 3 mod 4 and (with the exception of the first term) to 7 mod 12.

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 31; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 500}];aa
    Select[Prime[Range[500]],PrimeQ[(31+#)/2]&] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    list(n)=my(t=1, p, i=1); while(i2&&isprime((31+p)/2),print1(p, ", "))) \\ Anders Hellström, Jan 23 2017

A145481 Primes p such that 2*p - 17 is prime.

Original entry on oeis.org

11, 17, 23, 29, 53, 59, 83, 107, 137, 149, 167, 233, 239, 263, 269, 293, 317, 347, 359, 389, 419, 449, 479, 557, 563, 599, 617, 647, 653, 659, 809, 827, 857, 863, 947, 953, 983, 1049, 1163, 1187, 1217, 1229, 1283, 1319, 1373, 1409, 1427, 1439, 1487, 1493
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 17; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
    (* Second program: *)
    Select[Prime@ Range@ 250, And[PrimeQ@ #, # > 0] &[2 # - 17] &] (* Michael De Vlieger, Jan 23 2017 *)

Formula

a(n) = 2*A145475(n) - 17.

A145489 Numbers k such that 6k + 11 is prime and 12k + 5 is also prime.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 12, 16, 21, 23, 26, 37, 38, 42, 43, 47, 51, 56, 58, 63, 68, 73, 78, 91, 92, 98, 101, 106, 107, 108, 133, 136, 141, 142, 156, 157, 162, 173, 192, 196, 201, 203, 212, 218, 227, 233, 236, 238, 246, 247, 257, 267, 268, 271, 287, 296, 306, 313, 316, 323, 327, 332, 346, 353, 357, 366, 367, 371, 376, 387, 401, 406, 411, 423, 441, 442, 448, 453, 471, 472, 478, 483, 488, 491, 498
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,500], PrimeQ[6# + 11 ] && PrimeQ[12# + 5]&]
  • PARI
    isok(n) = isprime(6*n+11) && isprime(12*n+5); \\ Michel Marcus, Jan 24 2017

Formula

a(n) = (A145475(n) - 5)/12.

Extensions

Corrected by Artur Jasinski, Apr 01 2011
Showing 1-3 of 3 results.