cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145563 a(0)=0 and a(n+1) = 3*a(n) + 2^(n+2).

Original entry on oeis.org

0, 4, 20, 76, 260, 844, 2660, 8236, 25220, 76684, 232100, 700396, 2109380, 6344524, 19066340, 57264556, 171924740, 516036364, 1548633380, 4646948716, 13942943300, 41833024204, 125507461220, 376539160876, 1129651037060, 3389020220044, 10167194877860
Offset: 0

Views

Author

N. J. A. Sloane, Mar 18 2009

Keywords

Comments

Suggested by a discussion on the Sequence Fans Mailing List; the formula is due to Andrew V. Sutherland.
First differences of A255459. - Klaus Purath, Apr 25 2020

Crossrefs

Programs

  • Magma
    [ 4*(3^n - 2^n): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
    
  • Mathematica
    CoefficientList[Series[4x/((1-2x)(1-3x)),{x,0,40}],x] (* or *) RecurrenceTable[{a[0]==0, a[n]==(3a[n-1]+2^(n+1))},a,{n,40}] (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    a(n) = 4*(3^n - 2^n) \\ Felix Fröhlich, Sep 01 2018

Formula

From R. J. Mathar, Mar 18 2009: (Start)
a(n) = 4*(3^n - 2^n) = 4*A001047(n).
G.f.: 4*x/((1-2*x)*(1-3*x)). (End)
a(n) = A056182(n)*2. - Omar E. Pol, Mar 18 2009
a(n) = A217764(n,7). - Ross La Haye, Mar 27 2013
From Klaus Purath, Apr 25 2020: (Start)
a(n) = 5*a(n-1) - 6*a(n-2).
a(n) = 2*A210448(n) - A056182(n).
a(n) = (A056182(n) + A245804(n+1))/2. (End)