A145592
a(n)=number of numbers removed in each step of Eratosthenes's sieve for 2^14.
Original entry on oeis.org
8191, 2730, 1091, 623, 340, 260, 182, 154, 121, 94, 89, 74, 66, 62, 55, 48, 43, 39, 35, 31, 28, 25, 23, 19, 15, 12, 11, 9, 7, 5, 1
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 14; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
A227799
Number of composites removed in each step of the Sieve of Eratosthenes for 10^10.
Original entry on oeis.org
4999999999, 1666666666, 666666666, 380952380, 207792207, 159840159, 112828348, 95013343, 74358271, 56409724, 50950713, 41311372, 36273411, 33742734, 30153115, 26170720, 23065826, 21931483, 19640105, 18256894, 17506397, 15954848, 14993294, 13813524, 12531256
Offset: 1
a(1) = 10^10 \ 2 - 1.
a(2) = 10^10 \ 3 - 10^10 \ (2*3) - 1.
a(3) = 10^10 \ 5 - 10^10 \ (2*5) - 10^10 \ (3*5) + 10^10 \ (2*3*5) - 1.
a(4) = 10^10 \ 7 - 10^10 \ (2*7) - 10^10 \ (3*7) - 10^10 \ (5*7) + 10^10 \ (2*3*7) + 10^10 \ (2*5*7) + 10^10 \ (3*5*7) - 10^10 \ (2*3*5*7) - 1.
Cf.
A133228,
A145538,
A145539,
A145540,
A145583,
A227155,
A227797,
A227798,
A145532,
A145533,
A145534,
A145535,
A145536,
A145537.
A145584
a(n) = number of numbers removed in step n of Eratosthenes's sieve for 2^6.
Original entry on oeis.org
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 6; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
A145585
a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^7.
Original entry on oeis.org
63, 20, 8, 4, 1
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 7; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
A145586
a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^8.
Original entry on oeis.org
127, 42, 16, 8, 5, 3
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 8; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)
A145587
a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^9.
Original entry on oeis.org
255, 84, 33, 19, 10, 7, 4, 2
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 9; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)
A145588
a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^10.
Original entry on oeis.org
511, 170, 67, 38, 20, 16, 11, 9, 6, 2, 1
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 10; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)
A145589
a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^11.
Original entry on oeis.org
1023, 340, 136, 77, 41, 32, 24, 21, 16, 10, 8, 5, 3, 2
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 11; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)
A145590
a(n)=number of numbers removed in each step of Eratosthenes's sieve for 2^12.
Original entry on oeis.org
2047, 682, 272, 155, 83, 65, 46, 40, 32, 25, 22, 18, 13, 11, 9, 6, 3, 2
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 12; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
A145591
a(n)=number of numbers removed in each step of Eratosthenes's sieve for 2^13.
Original entry on oeis.org
4095, 1364, 545, 311, 170, 130, 91, 77, 63, 51, 46, 36, 34, 29, 26, 21, 17, 15, 12, 11, 9, 6, 3, 1
Offset: 1
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 13; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
Showing 1-10 of 10 results.
Comments