cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A145583 a(n) = number of numbers removed in the n-th step of Eratosthenes's sieve for 10^2.

Original entry on oeis.org

49, 16, 6, 3
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 10^n is A122121(n).
Number of primes less than 10^2 is equal to 10^2 - (sum all of numbers in this sequence) - 1 = A006880(2).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 2; kk = PrimePi[Sqrt[10^nn]]; t3 = f3[10^nn, kk] (*Bob Hanlon (hanlonr(AT)cox.net) *)

A145584 a(n) = number of numbers removed in step n of Eratosthenes's sieve for 2^6.

Original entry on oeis.org

31, 10, 3, 1
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^6 is equal to 2^6 - (sum all of numbers in this sequence) - 1 = A007053(6).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 6; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A145585 a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^7.

Original entry on oeis.org

63, 20, 8, 4, 1
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^7 is equal to 2^7 - (sum all of numbers in this sequence) - 1 = A007053(7).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 7; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A145586 a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^8.

Original entry on oeis.org

127, 42, 16, 8, 5, 3
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^8 is equal to 2^8 - (sum all of numbers in this sequence) - 1 = A007053(8).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 8; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)

A145587 a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^9.

Original entry on oeis.org

255, 84, 33, 19, 10, 7, 4, 2
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^9 is equal to 2^9 - (sum all of numbers in this sequence) - 1 = A007053(9).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 9; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)

A145588 a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^10.

Original entry on oeis.org

511, 170, 67, 38, 20, 16, 11, 9, 6, 2, 1
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^10 is equal to 2^10 - (sum all of numbers in this sequence) - 1 = A007053(10).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 10; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)

A145589 a(n) = number of numbers removed in each step of Eratosthenes's sieve for 2^11.

Original entry on oeis.org

1023, 340, 136, 77, 41, 32, 24, 21, 16, 10, 8, 5, 3, 2
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^11 is equal to 2^11 - (sum all of numbers in this sequence) - 1 = A007053(11).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 11; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)

A145590 a(n)=number of numbers removed in each step of Eratosthenes's sieve for 2^12.

Original entry on oeis.org

2047, 682, 272, 155, 83, 65, 46, 40, 32, 25, 22, 18, 13, 11, 9, 6, 3, 2
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^12 is equal to 2^12 - (sum all of numbers in this sequence) - 1 = A007053(12).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 12; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A145591 a(n)=number of numbers removed in each step of Eratosthenes's sieve for 2^13.

Original entry on oeis.org

4095, 1364, 545, 311, 170, 130, 91, 77, 63, 51, 46, 36, 34, 29, 26, 21, 17, 15, 12, 11, 9, 6, 3, 1
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 2^n is A060967(n).
Number of primes less than 2^13 is equal to 2^13 - (sum all of numbers in this sequence) - 1 = A007053(13).

Crossrefs

Programs

  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 13; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A216240 Composite numbers arising in Eratosthenes sieve with removing the multiples of every other remaining numbers after 2 (see comment).

Original entry on oeis.org

9, 21, 33, 49, 51, 77, 87, 119, 121, 123, 141, 177, 187, 201, 203, 219, 237, 287, 289, 291, 309, 319, 327, 329, 357, 393, 413, 417, 447, 451, 469, 471, 493, 501, 511, 517, 543, 553, 573, 591, 633, 649, 669, 679, 687, 697, 721, 723, 737, 763, 771, 799, 803, 807
Offset: 1

Views

Author

Vladimir Shevelev, Mar 14 2013

Keywords

Comments

We remove even numbers except for 2. The first two remaining numbers are 3,5. Further we remove all remaining numbers multiple of 5,except for 5. The following two remaining numbers are 7,9. Now we remove all remaining numbers multiple of 9, except for 9, etc. The sequence lists the remaining composite numbers.
Conjecture. There exists x_0 such that for every x>=x_0, the number of a(n)<=x is more than pi(x).

Crossrefs

Programs

  • Mathematica
    Module[{a=Insert[Range[1,1000,2], 2, 2], k=4}, While[Length[a] >= 2k, a = Flatten[{Take[a,k], Select[Take[a,-Length[a]+k], Mod[#,a[[k]]] != 0 &]}]; k+=2]; Rest[Select[a,!PrimeQ[#]&]]] (* Peter J. C. Moses, Mar 27 2013 *)
Showing 1-10 of 10 results.