A145597 Generalized Narayana numbers, T(n, k) = 3/(n + 1)*binomial(n + 1, k + 2)*binomial(n + 1, k - 1), triangular array read by rows.
1, 3, 3, 6, 15, 6, 10, 45, 45, 10, 15, 105, 189, 105, 15, 21, 210, 588, 588, 210, 21, 28, 378, 1512, 2352, 1512, 378, 28, 36, 630, 3402, 7560, 7560, 3402, 630, 36, 45, 990, 6930, 20790, 29700, 20790, 6930, 990, 45, 55, 1485, 13068, 50820, 98010, 98010
Offset: 2
Examples
Triangle starts n\k|..1.....2....3.....4.....5.....6 ==================================== .2.|..1 .3.|..3.....3 .4.|..6....15....6 .5.|.10....45...45....10 .6.|.15...105..189...105....15 .7.|.21...210..588...588...210....21 ... Row 4: T(4,1) = 6: the 6 walks of length 4 from (0,0) to (-2,2) are LLUU, LULU, LUUL, ULLU, ULUL and UULL. Changing L to R in these walks gives the 6 walks from (0,0) to (2,2). T(4,2) = 15: the 15 walks of length 4 from (0,0) to (0,2) are UUUD, UULR, UURL, UUDU,URUL, ULUR, URLU, ULRU, RUUL, LUUR, RLUU, LRUU, RULU, LURU and UDUU. . . *......*......*......y......*......*......* . . *......6......*.....15......*......6......* . . *......*......*......*......*......*......* . . *......*......*......o......*......*......* x axis .
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
- F. Cai, Q.-H. Hou, Y. Sun, and A. L. B. Yang, Combinatorial identities related to 2x2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018; Table 2.1 for k=2.
- Colin Defant, Preimages under the stack-sorting algorithm, arXiv:1511.05681 [math.CO], 2015-2018; Graphs Combin., 33 (2017), 103-122.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Programs
-
Maple
with(combinat): T:= (n,k) -> 3/(n+1)*binomial(n+1,k+2)*binomial(n+1,k-1): for n from 2 to 11 do seq(T(n,k),k = 1..n-1); end do;
-
Mathematica
Table[3/(n+1) Binomial[n+1,k+2]Binomial[n+1,k-1],{n,2,20},{k,n-1}]//Flatten (* Harvey P. Dale, Aug 12 2023 *)
Formula
T(n,k) = (3/(n+1))*binomial(n+1,k+2)*binomial(n+1,k-1) for n >=2 and 1 <= k <= n-1. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n,2). Row sums A003517.
O.g.f. for column k+2: 3/(k + 1) * y^(k+3)/(1 - y)^(k+5) * Jacobi_P(k,3,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) := sum {k = 1..n-1} T(n,k)*x^k:
x^2*R_(n-1)(x) = 3*(n-1)*(n-2)/((n+1)*(n+2)*(n+3)) * Sum_{k = 0..n} binomial(n + 3,k) * binomial(2n - k,n) * (x - 1)^k;
Sum_{k = 1..n} (-1)^k*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^n = 6/(n+4)*binomial(2n+1,n-2)*x^n = A003517(n)*x^n.
Row generating polynomial R_(n+2)(x) = 3/(n+3)*x*(1-x)^n * Jacobi_P(n,3,3,(1+x)/(1-x)). [Peter Bala, Oct 31 2008]
G.f.: x*y*A001263(x,y)^3. - Vladimir Kruchinin, Nov 14 2020
Comments