cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138721 Concatenation of n digits 1, n digits 0 and n digits 1.

Original entry on oeis.org

101, 110011, 111000111, 111100001111, 111110000011111, 111111000000111111, 111111100000001111111, 111111110000000011111111, 111111111000000000111111111, 111111111100000000001111111111, 111111111110000000000011111111111, 111111111111000000000000111111111111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

a(n) is also A145641(n) written in base 2. - Omar E. Pol, Oct 15 2008
a(n) has 3n digits. - Omar E. Pol, Nov 12 2008

Examples

			From _Omar E. Pol_, Nov 12 2008: (Start)
n         Successive digits of a(n)
1                 ( 1 0 1 )
2              ( 1 1 0 0 1 1 )
3           ( 1 1 1 0 0 0 1 1 1 )
4        ( 1 1 1 1 0 0 0 0 1 1 1 1 )
5     ( 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 )
(End)
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1$n,0$n,1$n)):
    seq(a(n), n=1..14);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    Table[(100^n + 1)*(10^n - 1)/9, {n, 15}] (* Paolo Xausa, Aug 02 2024 *)
  • PARI
    Vec(x*(101000*x^2-2200*x+101)/((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

G.f.: x*(101000*x^2 - 2200*x + 101) / ((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)). - Colin Barker, Sep 16 2013
a(n) = (100^n+1)*(10^n-1)/9. - Paolo Xausa, Aug 02 2024

A147595 a(n) is the number whose binary representation is A138144(n).

Original entry on oeis.org

1, 3, 7, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739, 3221225475
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    [1,3,7] cat [3*(1+2^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    LinearRecurrence[{3,-2},{1,3,7,15,27},40] (* Harvey P. Dale, Nov 30 2020 *)
  • PARI
    Vec(-x*(2*x^2-1)*(2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
    
  • SageMath
    [1,3,7]+[3*(1+2^(n-2)) for n in range(4,40)] # G. C. Greubel, Oct 25 2022

Formula

a(n) = A060013(n+2), n > 3. - R. J. Mathar, Feb 05 2010
a(n+4) = 3*(2^(n+2) + 1), n >= 0. - Brad Clardy, Apr 03 2013
From Colin Barker, Sep 15 2013: (Start)
a(n) = 3*(4 + 2^n)/4 for n>3.
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: x*(1-2*x^2)*(1+2*x^2) / ((1-x)*(1-2*x)). (End)
E.g.f.: (3/4)*(4*exp(x) + exp(2*x)) - (15/4) - 7*x/2 - 3*x^2/2 - x^3/3. - G. C. Greubel, Oct 25 2022

Extensions

Extended by R. J. Mathar, Feb 05 2010

A147596 a(n) is the number whose binary representation is A138145(n).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 119, 231, 455, 903, 1799, 3591, 7175, 14343, 28679, 57351, 114695, 229383, 458759, 917511, 1835015, 3670023, 7340039, 14680071, 29360135, 58720263, 117440519, 234881031, 469762055, 939524103, 1879048199, 3758096391
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    [1,3,7,15,31] cat [7*(1+2^(n-3)): n in [6..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    Join[{1,3,7,15,31}, 7*(1+2^(Range[6, 40] -3))] (* G. C. Greubel, Oct 25 2022 *)
  • PARI
    Vec(-x*(2*x^2-1)*(4*x^4+2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
    
  • SageMath
    def A147596(n): return 7*(1+2^(n-3)) -(1/8)*(63*int(n==0) +62*int(n==1) +60*int(n ==2)) -(7*int(n==3) +6*int(n==4) +4*int(n==5))
    [A147596(n) for n in range(1,40)] # G. C. Greubel, Oct 25 2022

Formula

a(n) = 7*(2^(n-3) + 1) if n >= 6. - Hagen von Eitzen, Jun 02 2009
From Colin Barker, Sep 15 2013: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), for n >= 8.
G.f.: x*(1-2*x^2)*(1+2*x^2+4*x^4) / ((1-x)*(1-2*x)). (End)
E.g.f.: (7/8)*(8*exp(x) + exp(2*x)) - (1/8)*(63 + 62*x + 30*x^2) - 7*x^3/6 - x^4/4 - x^5/30. - G. C. Greubel, Oct 25 2022

Extensions

More terms from Hagen von Eitzen, Jun 02 2009

A147597 a(n) is the number whose binary representation is A138146(n).

Original entry on oeis.org

1, 7, 31, 119, 455, 1799, 7175, 28679, 114695, 458759, 1835015, 7340039, 29360135, 117440519, 469762055, 1879048199, 7516192775, 30064771079, 120259084295, 481036337159, 1924145348615, 7696581394439, 30786325577735, 123145302310919, 492581209243655
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Comments

Bisection of A147596.

Crossrefs

Programs

  • Magma
    [1,7,31] cat [7*(1+4^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    Table[FromDigits[#, 2] &@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 25}] (* or *)
    Rest@ CoefficientList[Series[x (2 x + 1) (2 x - 1) (4 x^2 + 2 x + 1)/((4 x - 1) (1 - x)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 25 2016 *)
    LinearRecurrence[{5,-4},{1,7,31,119,455},30] (* Harvey P. Dale, Aug 04 2025 *)
  • PARI
    Vec(x*(2*x+1)*(2*x-1)*(4*x^2+2*x+1)/((4*x-1)*(1-x)) + O(x^30)) \\ Colin Barker, Nov 25 2016
    
  • SageMath
    def A147597(n): return 7*(1+4^(n-2)) -(119/16)*int(n==0) -(31/4)*int(n==1) -7*int(n==2) -4*int(n==3)
    [A147597(n) for n in range(1,41)] # G. C. Greubel, Oct 25 2022

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 5*a(n-1) - 4*a(n-2) for n>5.
G.f.: x*(2*x+1)*(2*x-1)*(4*x^2+2*x+1)/((4*x-1)*(1-x)). (End)
a(n) = 7*4^(n-2) + 7 for n>3. - Colin Barker, Nov 25 2016
E.g.f.: (7/16)*(16*exp(x) + exp(4*x)) -(119/16) -31*x/4 -7*x^2/2 -2*x^3/3. - G. C. Greubel, Oct 25 2022

Extensions

More terms from R. J. Mathar, Feb 05 2010
Showing 1-4 of 4 results.