A145836 Coefficients of a symmetric matrix representation of the 9th falling factorial power, read by antidiagonals.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10080, 0, 0, 0, 15120, 544320, 544320, 15120, 0, 0, 40320, 1958040, 6108480, 1958040, 40320, 0, 0, 24192, 1796760, 12267360, 12267360, 1796760, 24192, 0, 1, 4608, 588168, 7988904, 18329850, 7988904, 588168, 4608, 1, 255, 74124, 2066232, 9874746, 9874746, 2066232, 74124, 255, 3025, 218484, 2229402, 4690350, 2229402, 218484, 3025, 7770, 212436, 965790, 965790, 212436, 7770, 6951, 85680, 185766, 85680, 6951, 2646, 15624, 15624, 2646, 462, 1260, 462, 36, 36, 1
Offset: 0
Examples
Full array of coefficients: [0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 15120, 40320, 24192, 4608, 255], [0, 0, 10080, 544320, 1958040, 1796760, 588168, 74124, 3025], [0, 0, 544320, 6108480, 12267360, 7988904, 2066232, 218484, 7770], [0, 15120, 1958040, 12267360, 18329850, 9874746, 2229402, 212436, 6951], [0, 40320, 1796760, 7988904, 9874746, 4690350, 965790, 85680, 2646], [0, 24192, 588168, 2066232, 2229402, 965790, 185766, 15624, 462], [0, 4608, 74124, 218484, 212436, 85680, 15624, 1260, 36], [1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
Links
- Brad Osgood, William Wu, Falling Factorials, Generating Functions and Conjoint Ranking Tables, arXiv:0810.3327 [math.CO], 2008.
Programs
-
Mathematica
rows = 9; c[k_, l_ /; l <= rows, m_ /; m <= rows] := Sum[(-1)^(k-p) Abs[StirlingS1[k, p]] StirlingS2[p, l] StirlingS2[p, m], {p, 1, k}]; c[rows, , ] = Nothing; Table[Table[c[rows, l-m+1, m], {m, 1, l}], {l, 1, 2rows-1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
Extensions
Corrected by Michel Marcus, Dec 15 2014
Comments