cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145836 Coefficients of a symmetric matrix representation of the 9th falling factorial power, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10080, 0, 0, 0, 15120, 544320, 544320, 15120, 0, 0, 40320, 1958040, 6108480, 1958040, 40320, 0, 0, 24192, 1796760, 12267360, 12267360, 1796760, 24192, 0, 1, 4608, 588168, 7988904, 18329850, 7988904, 588168, 4608, 1, 255, 74124, 2066232, 9874746, 9874746, 2066232, 74124, 255, 3025, 218484, 2229402, 4690350, 2229402, 218484, 3025, 7770, 212436, 965790, 965790, 212436, 7770, 6951, 85680, 185766, 85680, 6951, 2646, 15624, 15624, 2646, 462, 1260, 462, 36, 36, 1
Offset: 0

Views

Author

Jonathan Vos Post, Oct 21 2008

Keywords

Comments

Osgood and Wu abstract: We investigate the coefficients generated by expressing the falling factorial (xy)_k as a linear combination of falling factorial products (x)_l (y)_m for l,m = 1,...,k. Algebraic and combinatoric properties of these coefficients are discussed, including recurrence relations, closed-form formulas, relations with Stirling numbers and a combinatorial characterization in terms of conjoint ranking tables.

Examples

			Full array of coefficients:
[0,     0,       0,        0,        0,       0,      0,       0,    1],
[0,     0,       0,        0,    15120,   40320,   24192,   4608,  255],
[0,     0,   10080,   544320,  1958040, 1796760,  588168,  74124, 3025],
[0,     0,  544320,  6108480, 12267360, 7988904, 2066232, 218484, 7770],
[0, 15120, 1958040, 12267360, 18329850, 9874746, 2229402, 212436, 6951],
[0, 40320, 1796760,  7988904,  9874746, 4690350,  965790,  85680, 2646],
[0, 24192,  588168,  2066232,  2229402,  965790,  185766,  15624,  462],
[0,  4608,   74124,   218484,   212436,   85680,   15624,   1260,   36],
[1,   255,    3025,     7770,     6951,    2646,     462,     36,    1]
		

Crossrefs

Programs

  • Mathematica
    rows = 9;
    c[k_, l_ /; l <= rows, m_ /; m <= rows] := Sum[(-1)^(k-p) Abs[StirlingS1[k, p]] StirlingS2[p, l] StirlingS2[p, m], {p, 1, k}];
    c[rows, , ] = Nothing;
    Table[Table[c[rows, l-m+1, m], {m, 1, l}], {l, 1, 2rows-1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)

Extensions

Corrected by Michel Marcus, Dec 15 2014