cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145877 Triangle read by rows: T(n,k) is the number of permutations of [n] for which the shortest cycle length is k (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 4, 0, 2, 15, 3, 0, 6, 76, 20, 0, 0, 24, 455, 105, 40, 0, 0, 120, 3186, 714, 420, 0, 0, 0, 720, 25487, 5845, 2688, 1260, 0, 0, 0, 5040, 229384, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 2293839, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 25232230
Offset: 1

Views

Author

Emeric Deutsch, Oct 27 2008

Keywords

Comments

Row sums are the factorials (A000142).
Sum(T(n,k), k=2..n) = A000166(n) (the derangement numbers).
T(n,1) = A002467(n).
T(n,n) = (n-1)! (A000142).
Sum(k*T(n,k),k=1..n) = A028417(n).
For the statistic "length of the longest cycle", see A126074.

Examples

			T(4,2)=3 because we have 3412=(13)(24), 2143=(12)(34) and 4321=(14)(23).
Triangle starts:
      1;
      1,    1;
      4,    0,    2;
     15,    3,    0,    6;
     76,   20,    0,    0, 24;
    455,  105,   40,    0,  0, 120;
   3186,  714,  420,    0,  0,   0, 720;
  25487, 5845, 2688, 1260,  0,   0,   0, 5040;
  ...
		

Crossrefs

T(2n,n) gives A110468(n-1) (for n>0). - Alois P. Heinz, Apr 21 2017

Programs

  • Maple
    F:=proc(k) options operator, arrow: (1-exp(-x^k/k))*exp(-(sum(x^j/j, j = 1 .. k-1)))/(1-x) end proc: for k to 16 do g[k]:= series(F(k),x=0,16) end do: T:= proc(n,k) options operator, arrow: factorial(n)*coeff(g[k],x,n) end proc: for n to 11 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
  • Mathematica
    Rest[Transpose[Table[Range[0, 16]! CoefficientList[
          Series[(Exp[x^n/n] -1) (Exp[-Sum[x^k/k, {k, 1, n}]]/(1 - x)), {x, 0, 16}],x], {n, 1, 8}]]] // Grid (* Geoffrey Critzer, Mar 04 2011 *)

Formula

E.g.f. for column k is (1-exp(-x^k/k))*exp( -sum(j=1..k-1, x^j/j ) ) / (1-x). - Vladeta Jovovic