A145877 Triangle read by rows: T(n,k) is the number of permutations of [n] for which the shortest cycle length is k (1<=k<=n).
1, 1, 1, 4, 0, 2, 15, 3, 0, 6, 76, 20, 0, 0, 24, 455, 105, 40, 0, 0, 120, 3186, 714, 420, 0, 0, 0, 720, 25487, 5845, 2688, 1260, 0, 0, 0, 5040, 229384, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 2293839, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 25232230
Offset: 1
Examples
T(4,2)=3 because we have 3412=(13)(24), 2143=(12)(34) and 4321=(14)(23). Triangle starts: 1; 1, 1; 4, 0, 2; 15, 3, 0, 6; 76, 20, 0, 0, 24; 455, 105, 40, 0, 0, 120; 3186, 714, 420, 0, 0, 0, 720; 25487, 5845, 2688, 1260, 0, 0, 0, 5040; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
- D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
Crossrefs
Programs
-
Maple
F:=proc(k) options operator, arrow: (1-exp(-x^k/k))*exp(-(sum(x^j/j, j = 1 .. k-1)))/(1-x) end proc: for k to 16 do g[k]:= series(F(k),x=0,16) end do: T:= proc(n,k) options operator, arrow: factorial(n)*coeff(g[k],x,n) end proc: for n to 11 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
-
Mathematica
Rest[Transpose[Table[Range[0, 16]! CoefficientList[ Series[(Exp[x^n/n] -1) (Exp[-Sum[x^k/k, {k, 1, n}]]/(1 - x)), {x, 0, 16}],x], {n, 1, 8}]]] // Grid (* Geoffrey Critzer, Mar 04 2011 *)
Formula
E.g.f. for column k is (1-exp(-x^k/k))*exp( -sum(j=1..k-1, x^j/j ) ) / (1-x). - Vladeta Jovovic
Comments