cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145920 List of numbers that are both pentagonal (A000326) and binomial coefficients C(n,4) (A000332).

Original entry on oeis.org

0, 1, 5, 35, 70, 210, 330, 715, 1001, 1820, 2380, 3876, 4845, 7315, 8855, 12650, 14950, 20475, 23751, 31465, 35960, 46376, 52360, 66045, 73815, 91390, 101270, 123410, 135751, 163185, 178365, 211876, 230300, 270725, 292825, 341055, 367290, 424270
Offset: 1

Views

Author

Matthew Vandermast, Oct 28 2008

Keywords

Comments

All binomial coefficients C(n,4) belong to the generalized pentagonal sequence (A001318).
Pentagonal numbers of generalized pentagonal number (A001318) index number. - Raphie Frank, Nov 25 2012

Examples

			35, for example, is both A000326(5) and A000332(7).
		

Crossrefs

Cf. A141919, of which this is a subsequence.

Formula

a(n+1) = A000326 (A001318(n)).
Positive values of A000332(n) belong to the sequence if and only if 3 does not divide n. A000332(n) is positive when n>3.
Conjecture: a(n) = a(n-1) + 4a(n-2) - 4a(n-3) - 6a(n-4) + 6a(n-5) + 4a(n-6) - 4a(n-7) - a(n-8) + a(n-9). - R. J. Mathar, Oct 29 2008
Conjecture: G.f.: x^2(1 + 4x + 26x^2 + 19x^3 + 4x^5 + x^6 + 26x^4)/((1+x)^4(1-x)^5). - R. J. Mathar, Oct 29 2008
a(n) = (27x^4 - 18x^3 - 3x^2 + 2x)/8 where x = floor(n/2)*(-1)^n, for n >= 1. - William A. Tedeschi, Aug 16 2010