A145994 Last prime in a run of at least 2 consecutive primes of the form 4k+3.
11, 23, 47, 71, 83, 107, 131, 167, 227, 311, 367, 383, 443, 503, 631, 647, 691, 727, 751, 827, 863, 919, 971, 991, 1091, 1171, 1283, 1319, 1427, 1451, 1471, 1487, 1543, 1583, 1667, 1787, 1847, 1871, 1987, 2011, 2087, 2111, 2207, 2267, 2351, 2411, 2467, 2543, 2591, 2671, 2687
Offset: 1
Examples
a(1)=11 because this sequence includes consecutive runs of any length >1 and this ending term in a run of 2 is 11.
References
- Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6
Crossrefs
Programs
-
Maple
A145994 := proc() local m,p,r,i,lp ; m := 3 ; p := 2 ; r := 0 ; for i from 2 to 1000 do if modp(p,4) = m then r := r+1 ; else if r > 1 then printf("%d,",prevprime(p)) ; end if; r := 0; end if; p := nextprime(p) ; end do: end proc: A145994() ; # R. J. Mathar, Aug 29 2018
-
Mathematica
Last /@ Select[Split[Select[4Range[1000]+3, PrimeQ], #2 == NextPrime[#1]&], Length[#]>1&] (* Jean-François Alcover, Mar 26 2020 *)
-
UBASIC
10 'cluster primes 20 C=1 30 input "end #";L 40 for N=3 to L step 2 50 S=int(sqrt(N)) 60 for A=3 to S step 2 70 B=N/A 80 if int(B)*A=N then cancel for:goto 170 90 next A 100 C=C+1 110 E=N/4:E=int(E):R=N-(4*E) 120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1 130 if R=3 then T1=0 140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2 150 if R=1 then T2=0 160 if T1>10 or T2>10 then stop 170 next 180 print "Total primes=";C;:print "Type A";C1;"Type B";C3
Comments