cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A145986 n-th prime in the first occurrence of at least n consecutive primes of the form 4k + 1.

Original entry on oeis.org

5, 17, 101, 409, 2633, 11657, 11677, 11681, 11689, 373777, 766373, 3358373, 12205121, 12270281, 12270301, 12270317, 297388097, 297779509, 297779513, 1113443473, 1113443521, 1113443533, 1113443549, 1113443561, 84676453373, 84676453429
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Comments

a(1)=5 is same as A055623(1) because 5 is a single-digit number.

Examples

			a(2)=17 because this is the 2nd prime in the first run of 2 primes where p == 1 mod 4.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007, pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • Mathematica
    Flatten[Table[SequencePosition[Table[If[Mod[p-1,4]==0,1,0],{p,Prime[Range[250000]]}],PadRight[ {},n,1],1],{n,12}],1][[;;,-1]]//Prime (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Jul 14 2024 *)
  • PARI
    r=0;c=0;forprime(p=2,4e9,if(p%4==1,if(c++>r,r=c;print1(p", ")),c=0)) \\ Charles R Greathouse IV, Mar 22 2011
  • UBASIC
    10 'cluster primes
    20 C=1:input "end #";L
    40 for N=3 to L step 2
    50 S=int(sqrt(N))
    60 for A=3 to S step 2
    70 B=N/A
    80 if int(B)*A=N then cancel for:goto 170
    90 next A
    100 C=C+1: E=int(N/4):R=N-(4*E)
    120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1
    130 if R=3 then T1=0:print " ";N;:C3=C3+1:T2=T2+1:print T2
    150 if R=1 then T2=0
    160 if T1>10 or T2>10 then stop
    170 next
    180 print "Total primes=";C;:print "Type A:";C1;" Type B:";C3
    

Extensions

Entry rewritten and a(13)-a(26) added by Charles R Greathouse IV, Mar 22 2011
Edited by M. F. Hasler, May 02 2015
Definition clarified by N. J. A. Sloane, Dec 18 2022

A145994 Last prime in a run of at least 2 consecutive primes of the form 4k+3.

Original entry on oeis.org

11, 23, 47, 71, 83, 107, 131, 167, 227, 311, 367, 383, 443, 503, 631, 647, 691, 727, 751, 827, 863, 919, 971, 991, 1091, 1171, 1283, 1319, 1427, 1451, 1471, 1487, 1543, 1583, 1667, 1787, 1847, 1871, 1987, 2011, 2087, 2111, 2207, 2267, 2351, 2411, 2467, 2543, 2591, 2671, 2687
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1)=11 because this sequence includes consecutive runs of any length >1 and this ending term in a run of 2 is 11.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Cf. A039702, A055623, A145986, A145988, A145990, A145991, A145992 (run lengths), A145993 (first prime in run)

Programs

  • Maple
    A145994 := proc()
        local m,p,r,i,lp ;
        m := 3 ;
        p := 2 ;
        r := 0 ;
        for i from 2 to 1000 do
            if modp(p,4) = m then
                r := r+1 ;
            else
                if r > 1 then
                    printf("%d,",prevprime(p)) ;
                end if;
                r := 0;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    A145994() ; # R. J. Mathar, Aug 29 2018
  • Mathematica
    Last /@ Select[Split[Select[4Range[1000]+3, PrimeQ], #2 == NextPrime[#1]&], Length[#]>1&] (* Jean-François Alcover, Mar 26 2020 *)
  • UBASIC
    10 'cluster primes
    20 C=1
    30 input "end #";L
    40 for N=3 to L step 2
    50 S=int(sqrt(N))
    60 for A=3 to S step 2
    70 B=N/A
    80 if int(B)*A=N then cancel for:goto 170
    90 next A
    100 C=C+1
    110 E=N/4:E=int(E):R=N-(4*E)
    120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1
    130 if R=3 then T1=0
    140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2
    150 if R=1 then T2=0
    160 if T1>10 or T2>10 then stop
    170 next
    180 print "Total primes=";C;:print "Type A";C1;"Type B";C3

A145990 Primes which start a run of at least length 2 of consecutive primes == 1 (mod 4).

Original entry on oeis.org

13, 37, 89, 109, 193, 229, 277, 313, 349, 389, 449, 509, 613, 661, 701, 757, 797, 853, 877, 929, 997, 1093, 1109, 1193, 1237, 1297, 1373, 1429, 1489, 1549, 1597, 1609, 1637, 1669, 1709, 1733, 1789, 1873, 1889, 1933, 1993, 2069, 2113, 2137, 2153, 2213, 2269
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1)=13 because this sequence includes consecutive runs of any length and this first term > 1 in a run of 2 is 13.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007, pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • Maple
    for i from 2 to 300 do
            if (ithprime(i) mod 4) = 1  and ithprime(i-1) mod 4 <> 1 and ithprime(i+1) mod 4 = 1 then
                    printf("%d,",ithprime(i)) ;
            end if;
    end do: # R. J. Mathar, Sep 30 2011
  • Mathematica
    Prime[#+1]&/@(SequencePosition[Table[If[Mod[n,4]==1,1,0],{n,Prime[ Range[ 350]]}],{0,1,1},Overlaps->False][[All,1]]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
  • UBASIC
    10 'cluster primes
    20 C=1
    30 input "end #";L
    40 for N=3 to L step 2
    50 S=int(sqrt(N))
    60 for A=3 to S step 2
    70 B=N/A
    80 if int(B)*A=N then cancel for:goto 170
    90 next A
    100 C=C+1
    110 E=N/4:E=int(E):R=N-(4*E)
    120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1
    130 if R=3 then T1=0
    140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2
    150 if R=1 then T2=0
    160 if T1>10 or T2>10 then stop
    170 next
    180 print "Total primes=";C;:print "Type A";C1;"Type B";C3

Extensions

Corrected and extended by Harvey P. Dale, Aug 02 2017

A145989 Run lengths of consecutive primes == 1 (mod 4) where the run length is at least 2.

Original entry on oeis.org

2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 3, 2, 4, 2, 2, 2, 3, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Comments

The run lengths of 1's in A039702 are 1, 2, 1, 2, 1, 1, 1, 3,.. as listed in A091318. Deleting all 1's from A091318 generates this sequence here. - R. J. mathar, Sep 30 2011
The maximum run length in the first 1000 terms is 9. - Harvey P. Dale, Jul 27 2025

Examples

			a(1)=2 because this sequence includes consecutive runs of any length and this first occurrence > 1 is a run of 2.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • Mathematica
    Length/@Select[Split[Table[If[Mod[p,4]==1,1,0],{p,Prime[Range[500]]}]],#[[1]]==1&&Length[#]>1&] (* Harvey P. Dale, Jul 27 2025 *)
  • UBASIC
    10 'cluster primes
    20 C=1
    30 input "end #";L
    40 for N=3 to L step 2
    50 S=int(sqrt(N))
    60 for A=3 to S step 2
    70 B=N/A
    80 if int(B)*A=N then cancel for:goto 170
    90 next A
    100 C=C+1
    110 E=N/4:E=int(E):R=N-(4*E)
    120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1
    130 if R=3 then T1=0
    140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2
    150 if R=1 then T2=0
    160 if T1>10 or T2>10 then stop
    170 next
    180 print "Total primes=";C;:print "Type A";C1;"Type B";C3

A145991 Final prime in a run of more than 1 consecutive primes == 1 (mod 4).

Original entry on oeis.org

17, 41, 101, 113, 197, 233, 281, 317, 353, 409, 461, 521, 617, 677, 709, 773, 809, 857, 881, 941, 1013, 1097, 1117, 1217, 1249, 1301, 1381, 1433, 1493, 1553, 1601, 1613, 1657, 1697, 1721, 1741, 1801, 1877, 1901, 1949, 1997, 2081, 2129, 2141, 2161, 2237
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1)=17 because this sequence includes consecutive runs of any length and this ending term > 1 in a run of 2 (comprising 13 and 17) is 17.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • UBASIC
    10 'cluster primes
    20 C=1
    30 input "end #";L
    40 for N=3 to L step 2
    50 S=int(sqrt(N))
    60 for A=3 to S step 2
    70 B=N/A
    80 if int(B)*A=N then cancel for:goto 170
    90 next A
    100 C=C+1
    110 E=N/4:E=int(E):R=N-(4*E)
    120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1
    130 if R=3 then T1=0
    140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2
    150 if R=1 then T2=0
    160 if T1>10 or T2>10 then stop
    170 next
    180 print "Total primes=";C;:print "Type A";C1;"Type B";C3

A145992 Run lengths of 2 or more consecutive primes of the form 4k+3.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 7, 2, 2, 2, 2, 3, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 5, 5, 2, 2, 4, 2, 2, 3, 2, 2, 3, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 3, 2, 3, 4, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1) = 2 counts the two 3's from A039702(4) to A039702(5).
a(9) = 4 counts the four 3's from A039702(46) to A039702(49).
a(14)= 7 counts the seven 4's from A039702(90) to A039702(96).
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • Maple
    A145992 := proc()
        local m,p,r,i ;
        m := 3 ;
        p := 2 ;
        r := 0 ;
        for i from 2 to 1000 do
            if modp(p,4) = m then
                r := r+1 ;
            else
                if r > 1 then
                    printf("%d,",r) ;
                end if;
                r := 0;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    A145992() ; # R. J. Mathar, Aug 29 2018
  • Mathematica
    Most[Length /@ Select[ SplitBy[ Prime@ Range@ 780, Mod[#, 4] &], Mod[#[[1]], 4] == 3 && Length[#] > 1 &]] (* Giovanni Resta, Aug 29 2018 *)
    Length/@Select[Split[Table[If[Mod[n,4]==3,1,0],{n,Prime[Range[ 1000]]}]], FreeQ[ #,0]&]/.(1->Nothing) (* Harvey P. Dale, Jul 27 2020 *)

Extensions

Corrected by R. J. Mathar, Aug 29 2018

A145993 Primes that start a run of at least 2 consecutive primes of the form 4k+3.

Original entry on oeis.org

7, 19, 43, 67, 79, 103, 127, 163, 199, 307, 359, 379, 439, 463, 619, 643, 683, 719, 739, 823, 859, 883, 967, 983, 1087, 1163, 1279, 1303, 1423, 1439, 1459, 1483, 1499, 1559, 1663, 1783, 1811, 1867, 1979, 1999, 2083, 2099, 2179, 2239, 2347, 2399, 2447, 2531, 2579, 2659, 2683, 2699, 2803, 2843, 2879
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1)=7 because this sequence includes consecutive runs of any length and this first term >1 in a run of 2 is 7.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • Maple
    A145993 := proc()
        local m,p,r,i,sp ;
        m := 3 ;
        p := 2 ;
        r := 0 ;
        sp := -1 ;
        for i from 2 to 1000 do
            if modp(p,4) = m then
                r := r+1 ;
                if r = 1 then
                    sp := p ;
                end if;
            else
                if r > 1 then
                    printf("%d,",sp) ;
                end if;
                r := 0;
                sp := -1 ;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    A145993() ; # R. J. Mathar, Aug 29 2018
  • Mathematica
    Most[First /@ Select[ SplitBy[ Prime@ Range@ 425, Mod[#, 4] &], Mod[#[[1]], 4] == 3 && Length[#] > 1 &]] (* Giovanni Resta, Aug 29 2018 *)

Extensions

619 inserted by R. J. Mathar, Aug 29 2018
Showing 1-7 of 7 results.