cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A275600 Numbers that can be written in all bases from base 2 to base 6 using only the digits 0, 1 and 2.

Original entry on oeis.org

0, 1, 2, 6, 36, 37, 260, 1302, 1376, 1380, 1381, 1382, 1556, 1560, 1561, 1562, 16932, 562500, 562501, 562502, 562506, 562512, 562536, 562537, 562752, 562760, 23610752, 23610756, 23610757, 23610786, 23615750, 23615760, 23615761, 23615762, 23615785, 23615786, 23626310
Offset: 1

Views

Author

Sergio Pimentel, Aug 03 2016

Keywords

Comments

Is there any number that keeps this property also in base 7, other than the trivial cases 0,1,2?

Examples

			16932 is in the sequence because this number can be written in bases 2 through 6 using only the digits 0, 1 and 2: 16932(b4)  = 10020210 / (b5) = 1020212 / (b6) = 210220.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Function[k, Max@ Flatten@ Map[IntegerDigits[k, #] &, Range[4, 6]] < 3]] (* or *)
    Select[Range[10^5], Function[k, Total@ Flatten@ Map[Take[RotateRight@ DigitCount[k, #], -(# - 3)] &, Range[4, 6]] == 0]] (* (not as efficient) Michael De Vlieger, Aug 03 2016 *)
  • PARI
    nextWithSmallDigits(n, base) = my (pow=1, rem=n, val=0, d); while (rem>0, d = rem % base; rem = rem \ base; if (d>2, val = 0; rem = rem+1, val = val + d*pow); pow = pow * base); return (val)
    { n = 0; prev = 0; while (n < 300, succ = prev; for (b=4,6, succ = nextWithSmallDigits(succ, b)); if (prev==succ, n = n+1; print(n " " prev); prev = succ+1, prev = succ)) } \\ Rémy Sigrist, Sep 08 2016
  • Perl
    use ntheory ":all"; my($x,$n10)=(0,0); while ($x < 50) { my $n = fromdigits( todigitstring($n10++, 3), 6);  next if vecany { $ > 2 } todigits($n, 4);  next if vecany { $ > 2 } todigits($n, 5);  print ++$x," $n\n"; } # Dana Jacobsen, Aug 16 2016
    
  • Python
    from gmpy2 import digits
    A275600_list = [n for n in (int(digits(m,3),6) for m in range(10**6)) if max(digits(n,5)) <= '2' and max(digits(n,4)) <= '2'] # Chai Wah Wu, Aug 15 2016
    

Extensions

a(18)-a(26) from Michael De Vlieger, Aug 03 2016
a(27)-a(37) from Chai Wah Wu, Aug 15 2016

A131646 Numbers that can be written from base 2 to base 18 using only the digits 0 to 9 (conjectured to be complete).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 20, 1027, 1028, 1029, 14745, 9020076688681, 9439828025162228377, 9439829801208141318
Offset: 1

Views

Author

Daniel Mondot, Sep 08 2007, Nov 02 2008

Keywords

Comments

Originally checked to 2^20356 (or 5.8*10^6127) in Nov 2008.
It appears that 19 and 20 are the only numbers > 9 that can be written up to base 19 only using digits 0 to 9 and 20 is the only number > 9 that can be written up to base 20 only using digits 0 to 9.
It is a plausible conjecture that there are no more terms, but this has not been proved. - N. J. A. Sloane, Nov 17 2017

References

  • B. R. Barwell, Numbers Without Letters, Journal of Recreational Mathematics, Vol. 25:3 (1993), 174-179.

Crossrefs

Programs

  • Mathematica
    f[n_] := Total[Total@ Drop[RotateRight[DigitCount[n, #]], 10] & /@ Range[11, 18]]; Select[Range[0, 20000], f@ # == 0 &] (* Michael De Vlieger, Aug 29 2015 *)
  • PARI
    isok(n) = if (n, for (b=11, 18, if (vecmax(digits(n,b))>9, return(0)))); 1; \\ Michel Marcus, Aug 30 2015

Extensions

Edited by Charles R Greathouse IV, Nov 01 2009
Reference added by William Rex Marshall, Oct 23 2011

A146028 Numbers that can be written from base 2 to base 15 using only the digits 0 to 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 174731235562130, 174731235562131, 174731235562132, 174731235562143, 174731235562147, 174731235562170, 174731235562171, 174731235564710, 174731235564711, 174731236371006, 25354527232277132536350, 25354527232277132536351
Offset: 1

Views

Author

Daniel Mondot, Nov 02 2008, Nov 06 2008

Keywords

Comments

It is a plausible conjecture that there are no more terms, but this has not been proved. - N. J. A. Sloane, Nov 17 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 10^5], Function[n, Times @@ Boole@ Map[Max@ IntegerDigits[n, #] <= 7 &, Range[2, 15]] > 0]] (* Michael De Vlieger, Aug 15 2016 *)
Showing 1-3 of 3 results.