cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146076 Sum of even divisors of n.

Original entry on oeis.org

0, 2, 0, 6, 0, 8, 0, 14, 0, 12, 0, 24, 0, 16, 0, 30, 0, 26, 0, 36, 0, 24, 0, 56, 0, 28, 0, 48, 0, 48, 0, 62, 0, 36, 0, 78, 0, 40, 0, 84, 0, 64, 0, 72, 0, 48, 0, 120, 0, 62, 0, 84, 0, 80, 0, 112, 0, 60, 0, 144, 0, 64, 0, 126, 0, 96, 0, 108, 0, 96, 0, 182, 0, 76, 0, 120, 0, 112, 0, 180, 0, 84, 0, 192, 0, 88, 0, 168, 0, 156
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2009

Keywords

Comments

The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception. A074400 is the main entry.
a(n) is also the total number of parts in all partitions of n into an even number of equal parts. - Omar E. Pol, Jun 04 2017

Crossrefs

Programs

  • Maple
    A146076 := proc(n)
        if type(n,'even') then
            2*numtheory[sigma](n/2) ;
        else
            0;
        end if;
    end proc: # R. J. Mathar, Dec 07 2017
  • Mathematica
    f[n_] := Plus @@ Select[Divisors[n], EvenQ]; Array[f, 150] (* Vincenzo Librandi, May 17 2013 *)
    a[n_] := DivisorSum[n, Boole[EvenQ[#]]*#&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
    Table[CoefficientList[Series[-Log[QPochhammer[x^2, x^2]], {x, 0, 60}],x][[n + 1]] n, {n, 1, 60}] (* Benedict W. J. Irwin, Jul 04 2016 *)
    a[n_] := If[OddQ[n], 0, 2*DivisorSigma[1, n/2]]; Array[a, 100] (* Amiram Eldar, Jan 11 2023 *)
  • PARI
    vector(80, n, if (n%2, 0, sumdiv(n, d, d*(1-(d%2))))) \\ Michel Marcus, Mar 30 2015
    
  • PARI
    a(n) = if (n%2, 0, 2*sigma(n/2)); \\ Michel Marcus, Apr 01 2015

Formula

a(2k-1) = 0, a(2k) = 2*sigma(k) for positive k.
Dirichlet g.f.: zeta(s - 1)*zeta(s)*2^(1 - s). - Geoffrey Critzer, Mar 29 2015
a(n) = A000203(n) - A000593(n). - Omar E. Pol, Apr 05 2016
L.g.f.: -log(Product_{ k>0 } (1-x^(2*k))) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 04 2016
a(n) = A000203(n)*(1 - (1/A038712(n))). - Omar E. Pol, Aug 01 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Nov 06 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = 2 - A065442 = 0.393304... . - Amiram Eldar, Dec 14 2024

Extensions

Corrected by Jaroslav Krizek, May 07 2011