cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146291 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001222(n)), giving the number of divisors of n with m prime factors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

All rows are palindromic. T(n,0) = T(n,A001222(n)) = 1.
Two numbers have identical rows in the table if and only if they have the same prime signature.
If n is a perfect square then Sum_{even m} T(n,m) = 1 + Sum_{odd m} T(n,m), otherwise Sum_{even m} T(n,m) = Sum_{odd m} T(n,m). - Geoffrey Critzer, Feb 08 2015

Examples

			Rows begin:
1;
1, 1;
1, 1;
1, 1, 1;
1, 1;
1, 2, 1;
1, 1;
1, 1, 1, 1;
1, 1, 1;
1, 2, 1;
...
12 has 1 divisor with 0 total prime factors (1), 2 with 1 (2 and 3), 2 with 2 (4 and 6) and 1 with 3 (12), for a total of 6. The 12th row of the table therefore reads (1, 2, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 2k^2 + (1)k^3 = (1 + k + k^2)(1 + k), derived from the prime factorization of 12 (namely, 2^2*3^1).
		

Crossrefs

Row sums equal A000005(n). T(n,1) = A001221(n) for n>1.
Row n of A007318 is identical to row A002110(n) of this table and also identical to the row for any squarefree number with n prime factors.

Programs

  • Maple
    with(numtheory):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
             add(x^bigomega(d), d=divisors(n))):
    seq(T(n), n=1..100);  # Alois P. Heinz, Feb 25 2015
  • Mathematica
    Join[{{1}},
    Table[nn = DivisorSigma[0, n];
      CoefficientList[
       Series[Product[(1 - x^i)/(1 - x), {i,
    FactorInteger[n][[All, 2]] + 1}], {x, 0, nn}], x], {n, 2, 100}]] (* Geoffrey Critzer, Jan 01 2015 *)

Formula

If the canonical factorization of n into prime powers is the product of p^e(p), then T(n,m) is the coefficient of k^m in the polynomial expansion of Product_p (sum_{i=0..e} k^i).