A146556 Natural growth of an aliquot sequence driven by a perfect number 2^(p-1)*((2^p) - 1).
3, 5, 7, 9, 17, 19, 21, 43, 45, 111, 193, 195, 477, 927, 1777, 1779, 2973, 4963, 6397, 6399, 12961, 14983, 14985, 40191, 66993, 114063, 193233, 334959, 558273, 951999, 1586673, 3724815, 8255985, 18271887, 31279473, 66853647, 171456753, 339654927
Offset: 1
Examples
The aliquot sequence starting at 1488 (2^4*31*3) is: 1488, 2480, 3472, 4464,8432, 9424 or: 496*3, 496*5, 496*7, 496*9, 496*17, 496*19, always keeping the 496 driver until reaching a term that is not coprime with 496.
Links
- Mathworld, Aliquot Sequence
- Stern, Aliquot Sequences from the trenches [broken link?]
Programs
-
Maple
p := 7: dr := 2^(p-1)*(2^p-1) ; f := 3 ; aliq := proc(n) option remember ; global dr,f ; local an_1 ; if n = 1 then dr*f ; else an_1 := procname(n-1) ; numtheory[sigma](an_1)-an_1 ; fi; end: A := proc(n) option remember ; global dr ; aliq(n)/dr ; end: for n from 1 to 70 do printf("%a,",A(n)) ; od: # R. J. Mathar, Jan 22 2009
-
Mathematica
NestList[2*DivisorSigma[1,#]-#&,3,40] (* Harvey P. Dale, Jul 16 2013 *)
-
PARI
A146556()=a=[3];until(#a==79,a=concat(a,a[#a]+2*(sigma(a[#a])-a[#a])));a
-
PARI
a(n)=if(n==1,3,2*sigma(a(n-1))-a(n-1)) \\ R. K. Guy, Jul 16 2013
Formula
a(n) = a(n-1) + 2*(sigma(a(n-1)) - a(n-1)). - Roderick MacPhee, Aug 21 2012
Extensions
More terms, as derived from p=7, driver 8128. - R. J. Mathar, Jan 22 2009
Comments