cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146980 Nonsquarefree numbers such that n-1 is prime and n+1 is square.

Original entry on oeis.org

8, 24, 48, 80, 168, 224, 360, 440, 728, 840, 1088, 1224, 1368, 1848, 2208, 2400, 3024, 3720, 3968, 4760, 5040, 5624, 5928, 7920, 8648, 10608, 11448, 13688, 14160, 14640, 16128, 17160, 18224, 19320, 21024, 24024, 25920, 28560, 29928, 31328, 33488
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 04 2008

Keywords

Comments

Also numbers n > 3 such that n-1 is prime and n+1 is square.
Sequence gives values x of fundamental solution (x,y) to Pellian x^2 - D*y^2 = 1, with D = n-1 = A049002, corresponding values y being sqrt(n+1) = A028870. (Substituting back into the Pellian we indeed have n^2 - (n-1)(n+1) = 1.) - Lekraj Beedassy, Feb 23 2019

Crossrefs

Programs

  • Magma
    [ n: n in [1..35000] | not IsSquarefree(n) and IsPrime(n-1) and IsSquare(n+1) ]; // Klaus Brockhaus, Nov 05 2008
    
  • Mathematica
    Select[Range[35000], !SquareFreeQ[#] && PrimeQ[#-1] && IntegerQ[Sqrt[#+1] ] &] (* G. C. Greubel, Feb 22 2019 *)
    Mean/@SequencePosition[Table[Which[PrimeQ[n],1,IntegerQ[Sqrt[ n]],3,!SquareFreeQ[ n],2,True,0],{n,33500}],{1,2,3}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 03 2020 *)
  • PARI
    list(lim)=my(v=List()); forstep(k=3,sqrtint(lim\1+1),2, if(isprime(k^2-2), listput(v,k^2-1))); Vec(v) \\ Charles R Greathouse IV, Jun 13 2017
    
  • Sage
    [n for n in (1..35000) if not is_squarefree(n) and is_prime(n-1) and is_square(n+1)] # G. C. Greubel, Feb 22 2019

Extensions

Extended beyond a(6) by Klaus Brockhaus, Nov 05 2008