A147315 L-matrix for Euler numbers A000111(n+1).
1, 1, 1, 2, 3, 1, 5, 11, 6, 1, 16, 45, 35, 10, 1, 61, 211, 210, 85, 15, 1, 272, 1113, 1351, 700, 175, 21, 1, 1385, 6551, 9366, 5901, 1890, 322, 28, 1, 7936, 42585, 70055, 51870, 20181, 4410, 546, 36, 1, 50521, 303271, 563970, 479345, 218925, 58107, 9240, 870, 45, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 2, 3, 1; 5, 11, 6, 1; 16, 45, 35, 10, 1; 61, 211, 210, 85, 15, 1; 272, 1113, 1351, 700, 175, 21, 1; ... The production array for L is the tridiagonal array 1, 1; 1, 2, 1; 0, 3, 3, 1; 0, 0, 6, 4, 1; 0, 0, 0, 10, 5, 1; 0, 0, 0, 0, 15, 6, 1; 0, 0, 0, 0, 0, 21, 7, 1; 0, 0, 0, 0, 0, 0, 28, 8, 1,; 0, 0, 0, 0, 0, 0, 0, 36, 9, 1; From _Peter Bala_, Jan 31 2011: (Start) Examples of forests: The diagrams below are drawn so that the leftmost child of a binary node has the maximum label. T(4,1) = 5. The 5 forests consisting of a single non-plane increasing unary-binary tree on 4 nodes are ...4... ........ .......... ........... ........... ...|... ........ .......... ........... ........... ...3... .4...3.. .4........ ........4.. ........3.. ...|... ..\./... ..\....... ......./... ......./... ...2... ...2.... ...3...2.. ..3...2.... ..4...2.... ...|... ...|.... ....\./... ...\./..... ...\./..... ...1... ...1.... .....1.... ....1...... ....1...... T(4,2) = 11. The 11 forests consisting of two non-plane increasing unary-binary trees on 4 nodes are ......... ...3..... .3...2... ...|..... ..\./.... ...2..... ...1...4. ...|..... ......... ...1...4. . ......... ...4..... .4...2... ...|..... ..\./.... ...2..... ...1...3. ...|..... ......... ...1...3. . ......... ...4..... .4...3... ...|..... ..\./.... ...3..... ...1...2. ...|..... ......... ...1...2. . ......... ...4..... .4...3... ...|..... ..\./.... ...3..... ...2...1. ...|..... ......... ...2...1. . ......... ......... .......... ..2..4... ..3..4... ..4...3... ..|..|... ..|..|... ..|...|... ..1..3... ..1..2... ..1...2... ......... ......... .......... (End)
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Tom Copeland, Mathemagical Forests
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Programs
-
Maple
A147315 := proc(n,k) n!*exp(x*(sec(t)+tan(t)-1)) - 1: coeftayl(%,t=0,n) ; coeftayl(%,x=0,k) ; end proc: seq(seq(A147315(n,k),k=1..n),n=0..12) ; # R. J. Mathar, Mar 04 2011 # second Maple program: b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u)) end: g:= proc(n) option remember; expand(`if`(n=0, 1, add( g(n-j)*x*binomial(n-1, j-1)*b(j, 0), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n+1))(g(n+1)): seq(T(n), n=0..10); # Alois P. Heinz, May 19 2021
-
Mathematica
t[n_, k_] := t[n, k] = t[n-1, k-1] + (k+1)*t[n-1, k] + 1/2*(k+1)*(k+2)*t[n-1, k+1]; t[n_, k_] /; (n < 0 || k < 0 || k > n) = 0; t[0, 0] = t[1, 0] = 1; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 21 2011, after PARI prog. *)
-
Maxima
Co(n,k):=sum(binomial(k,j)*(if oddp(n-k+j) then 0 else if (n-k+j)/2
A147315(n,m):=1/m!*sum((if oddp(n-k) then 0 else 2^(1-k)*sum((-1)^(floor((n+k)/2)-i)*binomial(k,i)*(2*i-k)^n,i,0,floor(k/2)))*(sum(Co(i,m)*binomial(k-i+m-1,m-1),i,1,k)),k,m,n); /* Vladimir Kruchinin, Feb 17 2011 */ -
Maxima
T(n,m):=(sum(binomial(k+m,m)*((-1)^(n-k-m)+1)*sum(binomial(j+k+m,k+m)*(j+k+m+1)!*2^(-j-k-1)*(-1)^((n+k+m)/2+j+k+m)*stirling2(n+1,j+k+m+1), j,0,n-k-m), k,0,n-m))/(m+1)!; /* Vladimir Kruchinin, May 17 2011 */
-
PARI
{T(n,k)=if(k<0||k>n,0,if(n==0,1,T(n-1,k-1)+(k+1)*T(n-1,k)+(k+1)*(k+2)/2*T(n-1,k+1)))} /* offset=0 */
-
PARI
{T(n,k)=local(X=x+x*O(x^(n+2)));(n+1)!*polcoeff(polcoeff(exp(y*((1+sin(X))/cos(X)-1))-1,n+1,x),k+1,y)} /* offset=0 */
-
PARI
/* Generate from the production matrix P: */ {T(n,k)=local(P=matrix(n,n,r,c,if(r==c-1,1,if(r==c,c,if(r==c+1,c*(c+1)/2)))));if(k<0||k>n,0,if(n==k,1,(P^n)[1,k+1]))}
-
Sage
# uses[bell_matrix from A264428, A000111] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: A000111(n+1), 10) # Peter Luschny, Jan 18 2016
Formula
From Peter Bala, Jan 31 2011: (Start)
The following formulas refer to the table with an offset of 1: i.e., both the row n and column k indexing start at 1.
GENERATING FUNCTION
E.g.f.:
(1)... exp(x*(sec(t)+tan(t)-1)) - 1 = Sum_{n>=1} R(n,x)*t^n/n!
= x*t + (x+x^2)*t^2/2! + (2*x+3*x^2+x^3)*t^3/3! + ....
TABLE ENTRIES
(2)... T(n,k) = (1/k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*Z(n,j),
where Z(n,x) denotes the zigzag polynomials as described in A147309.
Compare (2) with the formula for the Stirling numbers of the second kind
(3)... Stirling2(n,k) = (1/k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^n.
Recurrence relation
(4)... T(n+1,k) = T(n,k-1) + k*T(n,k) + (1/2)*k(k+1)*T(n,k+1).
ROW POLYNOMIALS
The row polynomials R(n,x) begin
R(1,x) = x
R(2,x) = x+x^2
R(3,x) = 2*x+3*x^2+x^3
They satisfy the recurrence
(5)... R(n+1,x) = x*{R(n,x)+R'(n,x) + (1/2)*R''(n,x)},
where ' indicates differentiation with respect to x. This should be compared with the recurrence satisfied by the Bell polynomials Bell(n,x)
(6)... Bell(n+1,x) = x*(Bell(n,x) + Bell'(n,x)). (End)
From Vladimir Kruchinin, Feb 17 2011: (Start)
Sum_{m=1..n} T(n,m) = A000772(n).
Sum_{m=1..2n-1} T(2n-1,m)* Stirling1(m,1) = A000364(n).
Let Co(n,k) = Sum_{j=1..k} binomial(k,j)*(if (n-k+j) is odd then 0 else if (n-k+j)/2
T(n,m) = m!* Sum_{k=m..n} (if n-k is odd then 0 else 2^(1-k)) * Sum_{i=0..floor(k/2)} (-1)^(floor((n+k)/2)-i) * binomial(k,i) * (2*i-k)^n)))) * Sum_{i=1..k} Co(i,m) * binomial(k-i+m-1,m-1), n>0.
(End)
T(n,m) = Sum_{k = 0..n-m} binomial(k+m,m)*((-1)^(n-k-m)+1)*Sum_{j=0..n-k-m} binomial(j+k+m,k+m)*(j+k+m+1)!*2^(-j-k-1)*(-1)^((n+k+m)/2+j+k+m)* Stirling2(n+1,j+k+m+1)/(m+1)!. - Vladimir Kruchinin, May 17 2011
The row polynomials R(n,x) are given by D^n(exp(x*t)) evaluated at t = 0, where D is the operator (1+t+t^2/2!)*d/dt. Cf. A008277 and A094198. See also A185422. - Peter Bala, Nov 25 2011
Extensions
More terms from Michel Marcus, Mar 01 2014
Comments