cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260405 Irregular array read by rows, where the n-th row lists the primes p < A002110(n) such that 2*A002110(n) - p is also prime.

Original entry on oeis.org

5, 7, 13, 17, 19, 23, 29, 11, 19, 23, 31, 37, 41, 47, 53, 61, 67, 71, 73, 83, 89, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 163, 179, 181, 191, 193, 197, 17, 23, 29, 37, 53, 59, 71, 73, 97, 101, 103, 107, 113, 127, 137, 139, 157, 163, 173, 179, 197, 199, 211, 223, 229, 257, 263, 271
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 24 2015

Keywords

Comments

For each p in row n, (p, 2*A002110(n) - p) is a pair of centered primes at A002110(n) = prime(n)#.
The number of terms in row n are 0, 1, 6, 30, 190, ...; this is A147517.

Examples

			The first row is empty.
T(2,1) = 5 because (5,7) is a pair of primes centered at A002110(2) = prime(2)# = 6.
Triangle starts:
[];
[5];
[7, 13, 17, 19, 23, 29];
[11, 19, 23, 31, 37, 41, 47, 53, 61, 67, 71, 73, 83, 89, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 163, 179, 181, 191, 193, 197];
...
		

Crossrefs

Cf. A260388 (row 3).

Programs

  • PARI
    a147517=[0,1,6,30,190,1564,17075,226758,3792532]
    a002110(n)=prod(i=1, n, prime(i))
    a(n)=my(k=2,maxk=2,primorielle=2,s=0,y=5);if(n==1, y=5, maxk=2;while(sum(k=2, k=maxk, a147517[k])
    				
  • PARI
    row(n) = {v = []; pn = prod(i=1, n, prime(i)); forprime(p=1, pn-1, if (isprime(2*pn-p), v = concat(v, p))); v;} \\ Michel Marcus, Aug 02 2015
    
  • PARI
    a002110(n) = prod(p=1,n,prime(i));
    T(n,k) = my(P= a002110(n),compteur = 0,q=0,y=-1);forprime(p=1,P-1,q = 2*P-p;if(isprime(q),compteur++;if(compteur== k,y=p;y;break)));y

A147853 Least prime p such that there is a prime q with (p+q)/2=A002110(n), the n-th primorial.

Original entry on oeis.org

5, 7, 11, 17, 19, 19, 29, 37, 37, 37, 73, 47, 59, 71, 97, 79, 79, 101, 97, 137, 227, 137, 109, 127, 151, 127, 151, 151, 179, 227, 431, 139, 211, 223, 337, 181, 251, 257, 313, 227, 257, 227, 263, 491, 307, 241, 409, 263, 277
Offset: 2

Views

Author

Bill McEachen, Nov 15 2008

Keywords

Comments

If q>10^22 then q is a probable prime. - Pierre CAMI, Jan 07 2014

Examples

			For primorial=30, (p,q)=(7,53) as 7+53=2*30.
		

Crossrefs

Programs

  • PARI
    ospp(N)= { i=4; while(1, Q=2*N-prime(i); if( ispseudoprime(2*N-prime(i)),print(N,", ",prime(i) );return(1) ); i++ ); /* end WHILE */ }

Extensions

Improved description from T. D. Noe
Showing 1-2 of 2 results.