A147534 a(n) is congruent to (1,1,2) mod 3.
1, 1, 2, 4, 4, 5, 7, 7, 8, 10, 10, 11, 13, 13, 14, 16, 16, 17, 19, 19, 20, 22, 22, 23, 25, 25, 26, 28, 28, 29, 31, 31, 32, 34, 34, 35, 37, 37, 38, 40, 40, 41, 43, 43, 44, 46, 46, 47, 49, 49, 50, 52, 52, 53, 55, 55, 56, 58, 58, 59, 61, 61, 62, 64, 64, 65, 67, 67, 68, 70, 70, 71
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
I:=[1,1,2]; [n le 3 select I[n] else Self(n-3)+3: n in [1..70]]; // Vincenzo Librandi, Jul 25 2016
-
Maple
a:=n->add(chrem( [n,j], [1,3] ), j=1..n): seq(a(n)+1, n=-1..70); # Zerinvary Lajos, Apr 08 2009
-
Mathematica
LinearRecurrence[{1,0,1,-1},{1,1,2,4},80] (* Harvey P. Dale, Dec 09 2012 *)
Formula
a(n) = a(n-3)+3 = n-2/3-A131713(n)/3. G.f.: x*(1+x^2+x^3)/((1-x)^2*(1+x+x^2)). [R. J. Mathar, Nov 07 2008]
a(1)=1, a(2)=1, a(3)=2, a(4)=4, a(n)=a(n-1)+a(n-3)-a(n-4) for n>4. - Harvey P. Dale, Dec 09 2012
a(n) = (3*n - 2 - cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jul 24 2016
a(n) = 1 + floor((n-1)/3) + floor(2*(n-1)/3). - Wesley Ivan Hurt, Jul 25 2016
a(n) = n - sign((n-1) mod 3). - Wesley Ivan Hurt, Sep 25 2017