A147643 Numbers A associated with the records of the merit function of the ABC conjecture admitting only C which are powers of 23.
7, 17, 162, 2
Offset: 1
Extensions
Edited by M. F. Hasler, Jan 16 2015
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
C= 23 is the first candidate (and therefore by definition a record). Scanning the pairs (A,B) for this C we have L-values of L(1,22,23) = 0.5035, L(2,21,23) = 0.456, ... L(6,17,23) = 0.404, L(7,16,23) = 0.542 ,... L(11,12,23) = 0.428. The largest L-value stems from (A=7,B=16) which means the representative triple of the first record is (A,B,C) = (7,16,23). C= 23^2= 529 is the next candidate. Scanning again all (A,B) values subject to the constraints we achieve L(17,512,529) = 0.941... (Smaller ones like L(81,448,529) = 0.9123... are discarded). Since the L-value for C=529 is larger than the L-value for C=23, the next record is C=529 with representatives (A,B,C)= (17,512,529). The third candidate is C= 23^3= 12167. This generates a maximum of L(162,12005,12167) = 1.1089... (smaller values like L(17,12150,12167) = 1.0039.. discarded) which is again larger than the maximum of the previous record (which was 0.941..) So the C-value of 12167 is again a record-holder.
aa = {}; Do[If[(GCD[x, (x - 1)/2] == 1) && (GCD[x, (x + 1)/2] == 1) && (GCD[(x - 1)/2, (x + 1)/2] == 1), If[SquareFreeQ[(x^2 - 1) x/4], AppendTo[aa, x]]], {x, 2, 1000}]; aa
forstep(n=3,421,2,issquarefree(n*(n^2-1)/4)&&print1(n",")) \\ M. F. Hasler, Nov 03 2013
is(n)=n%2 && issquarefree(n) && issquarefree(n^2\4) \\ Charles R Greathouse IV, Mar 11 2014
aa = {}; Do[If[(GCD[x, (x - 1)/2] == 1) && (GCD[x, (x + 1)/2] == 1) && (GCD[(x - 1)/2, (x + 1)/2] == 1), If[SquareFreeQ[(x^2 - 1) x/4], AppendTo[aa, (x + 1)/2]]], {x, 2, 1000}]; aa
aa = {1}; bb = {1}; rr = {}; Do[logmax = 0; k = 2^x; w = Floor[(k - 1)/2]; Do[m = FactorInteger[n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log > logmax, bmin = k - n; amax = n; logmax = log; r = rad], {n, 1, w, 2}]; Print[{x, amax}]; AppendTo[aa, amax]; AppendTo[bb, bmin]; AppendTo[rr, r]; AppendTo[a, {x, logmax}], {x, 2, 15}]; bb (* Artur Jasinski with assistance of M. F. Hasler *)
Comments