A147757 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 0 and infinite digits 1.
1, 11, 101, 1001, 10101, 101101, 1011101, 10111101, 101111101, 1011111101, 10111111101, 101111111101, 1011111111101, 10111111111101, 101111111111101, 1011111111111101, 10111111111111101, 101111111111111101
Offset: 1
Examples
n .... Successive digits of a(n) 1 ............. ( 1 ) 2 ............ ( 1 1 ) 3 ........... ( 1 0 1 ) 4 .......... ( 1 0 0 1 ) 5 ......... ( 1 0 1 0 1 ) 6 ........ ( 1 0 1 1 0 1 ) 7 ....... ( 1 0 1 1 1 0 1 ) 8 ...... ( 1 0 1 1 1 1 0 1 ) 9 ..... ( 1 0 1 1 1 1 1 0 1 ) 10 ... ( 1 0 1 1 1 1 1 1 0 1 )
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{w = {1, 0}}, Which[n == 1, w = {1}, n == 2, w = {1, 1}, n == 3, AppendTo[w, 1], n >= 4, w = Join[w, Table[1, {n - 4}], Reverse@ w]]; FromDigits@ w]; Array[f, 19] (* Michael De Vlieger, Dec 05 2015 *) LinearRecurrence[{11,-10},{1,11,101,1001,10101},20] (* Harvey P. Dale, Aug 02 2017 *)
-
PARI
Vec( x+11*x^2+101*x^3 -91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ) + O(x^30)) \\ Michel Marcus, Dec 05 2015
Formula
G.f.: x+11*x^2+101*x^3-91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ). - R. J. Mathar, Aug 24 2011
a(n) = 11*a(n-1) - 10*a(n-2) for n>2. Wesley Ivan Hurt, Dec 06 2015
Comments