A147961 a(n) = ((6+sqrt(3))^n + (6-sqrt(3))^n)/2.
1, 6, 39, 270, 1953, 14526, 109863, 838998, 6442497, 49623030, 382873959, 2956927518, 22848289569, 176600866734, 1365216845031, 10554773538150, 81605126571777, 630953992102374, 4878478728359847, 37720263000939822, 291653357975402913, 2255071616673820830, 17436298586897553831
Offset: 0
Examples
a(3)=270
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-33).
Crossrefs
Cf. A098158.
Programs
-
Magma
Z
:= PolynomialRing(Integers()); N :=NumberField(x^2-3); S:=[ ((6+r3)^n+(6-r3)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008 -
Mathematica
CoefficientList[Series[(1-6x)/(1-12x+33x^2),{x,0,30}],x] (* or *) LinearRecurrence[{12,-33},{1,6},30] (* Harvey P. Dale, Jul 30 2021 *)
Formula
From Philippe Deléham, Nov 19 2008: (Start)
a(n) = 12*a(n-1) - 33*a(n-2) for n > 1, with a(0)=1, a(1)=6.
G.f.: (1-6x)/(1-12x+33x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*6^(2k)*3^(n-k))/6^n. (End)
E.g.f.: exp(6*x)*cosh(sqrt(3)*x). - Stefano Spezia, Apr 23 2025
Extensions
Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008