cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151281 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (1, 0), (1, 1)}.

Original entry on oeis.org

1, 2, 6, 16, 48, 136, 408, 1184, 3552, 10432, 31296, 92544, 277632, 824448, 2473344, 7365120, 22095360, 65920000, 197760000, 590790656, 1772371968, 5299916800, 15899750400, 47578857472, 142736572416, 427357700096, 1282073100288, 3840133464064, 11520400392192, 34517383151616, 103552149454848
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

From Paul Barry, Jan 26 2009: (Start)
Image of 2^n under A155761. Binomial transform is A129637. Hankel transform is 2^C(n+1,2).
In general, the g.f. of the reversion of x*(1+c*x)/(1+a*x+b*x^2) is given by the continued fraction x/(1 -(a-c)*x -(b-a*c+c^2)*x^2/(1 -(a-2*c)*x -(b-a*c+c^2)*x^2/(1 -(a-2*c)*x -(b-a*c+c^2)*x^2/(1 - .... (End)
a(n) is the number of nondeterministic Dyck meanders of length n. See A368164 or the de Panafieu-Wallner article for the definiton of nondeterministc walks. A nondeterministic meander contains at least one classical meander, i.e., a walk never crossing the x-axis. - Michael Wallner, Dec 18 2023

Crossrefs

Cf. A368164 (nondeterministic Dyck bridges), A368234 (nondeterministic Dyck excursions).

Programs

  • Magma
    [n le 3 select Factorial(n) else (3*n*Self(n-1) + 8*(n-3)*Self(n-2) - 24*(n-3)*Self(n-3))/n: n in [1..41]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    N:= 1000: # to get terms up to a(N)
    S:= series((sqrt(1-8*x^2)+4*x-1)/(4*x*(1-3*x)),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2013
  • Mathematica
    aux[i_, j_, n_] := Which[Min[i, j, n]<0 || Max[i, j]>n, 0, n==0, KroneckerDelta[i, j, n], True, aux[i, j, n]= aux[-1+i, -1+j, -1+n] +aux[-1+i, j, -1+n] +aux[1+i, j, -1+n]]; Table[Sum[aux[i,j,n], {i,0,n}, {j,0,n}], {n,0,25}]
    a[n_]:= a[n]= If[n<3, (n+1)!, (3*(n+1)*a[n-1] +8*(n-2)*a[n-2] -24*(n-2)*a[n-3])/(n+1)]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def a(n): # a = A151281
        if (n==0): return 1
        elif (n%2==1): return 3*a(n-1) - 2^((n-1)/2)*catalan_number((n-1)/2)
        else: return 3*a(n-1)
    [a(n) for n in (0..40)] # G. C. Greubel, Nov 09 2022

Formula

From Paul Barry, Jan 26 2009: (Start)
G.f.: 1/(1 -2*x -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 - .... (continued fraction).
G.f.: c(2*x^2)/(1-2*x*c(2*x^2)) = (sqrt(1-8*x^2) + 4*x - 1)/(4*x*(1-3*x)).
a(n) = Sum_{k=0..n} ((k+1)/(n+k+1))*C(n, (n-k)/2)*(1 +(-1)^(n-k))*2^((n-k)/2)*2^k.
Reversion of x*(1 + 2*x)/(1 + 4*x + 6*x^2). (End)
From Philippe Deléham, Feb 01 2009: (Start)
a(n) = Sum_{k=0..n} A120730(n,k)*2^k.
a(2*n+2) = 3*a(2*n+1), a(2*n+1) = 3*a(2*n) - 2^n*A000108(n).
a(2*n+1) = 3*a(2*n) - A151374(n). (End)
(n+1)*a(n) = 3*(n+1)*a(n-1) + 8*(n-2)*a(n-2) - 24*(n-2)*a(n-3). - R. J. Mathar, Nov 26 2012
a(n) ~ 3^n/2. - Vaclav Kotesovec, Feb 13 2014