A151281 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (1, 0), (1, 1)}.
1, 2, 6, 16, 48, 136, 408, 1184, 3552, 10432, 31296, 92544, 277632, 824448, 2473344, 7365120, 22095360, 65920000, 197760000, 590790656, 1772371968, 5299916800, 15899750400, 47578857472, 142736572416, 427357700096, 1282073100288, 3840133464064, 11520400392192, 34517383151616, 103552149454848
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
- Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS 12 (2009) 09.5.4
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
- A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
- Elie De Panafieu, Mohamed Lamine Lamali, and Michael Wallner, Combinatorics of nondeterministic walks of the Dyck and Motzkin type, arXiv:1812.06650 [math.CO], 2018.
- Élie de Panafieu and Michael Wallner, Combinatorics of nondeterministic walks, arXiv:2311.03234 [math.CO], 2023.
Crossrefs
Programs
-
Magma
[n le 3 select Factorial(n) else (3*n*Self(n-1) + 8*(n-3)*Self(n-2) - 24*(n-3)*Self(n-3))/n: n in [1..41]]; // G. C. Greubel, Nov 09 2022
-
Maple
N:= 1000: # to get terms up to a(N) S:= series((sqrt(1-8*x^2)+4*x-1)/(4*x*(1-3*x)),x,N+1): seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2013
-
Mathematica
aux[i_, j_, n_] := Which[Min[i, j, n]<0 || Max[i, j]>n, 0, n==0, KroneckerDelta[i, j, n], True, aux[i, j, n]= aux[-1+i, -1+j, -1+n] +aux[-1+i, j, -1+n] +aux[1+i, j, -1+n]]; Table[Sum[aux[i,j,n], {i,0,n}, {j,0,n}], {n,0,25}] a[n_]:= a[n]= If[n<3, (n+1)!, (3*(n+1)*a[n-1] +8*(n-2)*a[n-2] -24*(n-2)*a[n-3])/(n+1)]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
-
SageMath
def a(n): # a = A151281 if (n==0): return 1 elif (n%2==1): return 3*a(n-1) - 2^((n-1)/2)*catalan_number((n-1)/2) else: return 3*a(n-1) [a(n) for n in (0..40)] # G. C. Greubel, Nov 09 2022
Formula
From Paul Barry, Jan 26 2009: (Start)
G.f.: 1/(1 -2*x -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 - .... (continued fraction).
G.f.: c(2*x^2)/(1-2*x*c(2*x^2)) = (sqrt(1-8*x^2) + 4*x - 1)/(4*x*(1-3*x)).
a(n) = Sum_{k=0..n} ((k+1)/(n+k+1))*C(n, (n-k)/2)*(1 +(-1)^(n-k))*2^((n-k)/2)*2^k.
Reversion of x*(1 + 2*x)/(1 + 4*x + 6*x^2). (End)
From Philippe Deléham, Feb 01 2009: (Start)
a(n) = Sum_{k=0..n} A120730(n,k)*2^k.
a(2*n+2) = 3*a(2*n+1), a(2*n+1) = 3*a(2*n) - 2^n*A000108(n).
a(2*n+1) = 3*a(2*n) - A151374(n). (End)
(n+1)*a(n) = 3*(n+1)*a(n-1) + 8*(n-2)*a(n-2) - 24*(n-2)*a(n-3). - R. J. Mathar, Nov 26 2012
a(n) ~ 3^n/2. - Vaclav Kotesovec, Feb 13 2014
Comments