cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A216584 a(n) = A002426(n)*A000984(n); product of central trinomial coefficients and central binomial coefficients.

Original entry on oeis.org

1, 2, 18, 140, 1330, 12852, 130284, 1348776, 14247090, 152618180, 1654120468, 18096447096, 199536967084, 2214714164600, 24720932068200, 277289164574640, 3123590583844530, 35318969120870820, 400692715550057700, 4559427798654821400, 52020436064931914580
Offset: 0

Views

Author

Paul D. Hanna, Sep 08 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 18*x^2/2 + 140*x^3/3 + 1330*x^4/4 + 12852*x^5/5 + 130284*x^6/6 + ...
where
exp(L(x)) = 1 + 2*x + 11*x^2 + 66*x^3 + 485*x^4 + 3842*x^5 + 32712*x^6 + ... + A216585(n)*x^n/n + ...
The central trinomial coefficients (A002426) begin:
[1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, 73789, ...];
The central binomial coefficients (A000984) begin:
[1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, ...].
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2*n, n]*Sum[ Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    {a(n) = polcoeff((1+x+x^2)^n,n) * polcoeff((1+2*x+x^2)^n,n)}
    
  • PARI
    {a(n)=binomial(2*n,n)*sum(k=0,n\2,binomial(n,2*k)*binomial(2*k,k))}
    for(n=0,21,print1(a(n),", "))

Formula

a(n) = binomial(2*n, n) * Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k, k).
Logarithmic derivative of A216585, after ignoring initial term a(0).
a(n) = [x^n*y^n] ( 1 + (x + y)^2 + (x + y)^4 )^n. - Peter Bala, Feb 17 2020
G.f.: hypergeom([1/2, 1/2],[1],16*x/(1+4*x))/sqrt(1+4*x). - Mark van Hoeij, May 13 2025

A290443 a(n) = Catalan(n)*Motzkin(n-1).

Original entry on oeis.org

1, 2, 10, 56, 378, 2772, 21879, 181610, 1570426, 14024660, 128623768, 1206053576, 11523121900, 111885197400, 1101664016730, 10981102287240, 110647549986930, 1125688857747300, 11551507304378580, 119462291733779280, 1244159075360113380, 13040616137944154760, 137485676447508793950
Offset: 1

Views

Author

N. J. A. Sloane, Aug 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    motzkin[n_]:=Hypergeometric2F1[(1-n)/2, -n/2, 2, 4]; Table[CatalanNumber[n] motzkin[n - 1], {n, 50}] (* Indranil Ghosh, Aug 04 2017 *)

Formula

Conjecture: n*(n+1)^2*a(n) -2*-n*(2*n-1)^2*a(n-1) -12*(n-2)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Aug 05 2017

A151345 Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, -1), (-1, 0), (-1, 1), (1, -1), (1, 1)}.

Original entry on oeis.org

1, 1, 6, 55, 644, 8694, 128964, 2045901, 34136960, 592493044, 10614366568, 195164993478, 3667395504304, 70199379387700, 1365217425954360, 26918993235702735, 537238205832405960, 10837199420262489120, 220699085927921277600, 4533022083670853217060, 93823829712145743930720
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Crossrefs

Programs

  • Maple
    ogf := subs(t=sqrt(x), series(Int(Int(2*hypergeom([3/4, 5/4],[2],64*t^2*(t^2+1)/(16*t^2+1)^2)/(16*t^2+1)^(3/2),t),t)/t^2, t=0,60)); # Mark van Hoeij, Aug 17 2014
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}]

A290442 a(n) = Catalan(n-1)*Motzkin(n).

Original entry on oeis.org

1, 2, 8, 45, 294, 2142, 16764, 138567, 1194050, 10638056, 97383208, 911829646, 8702182020, 84418698600, 830606179680, 8274230277615, 83330214144930, 847407871749780, 8692682350690800, 89868901315880610, 935699342853054780, 9805180025713805460, 103353379063190310600, 1095295964528435629050
Offset: 1

Views

Author

N. J. A. Sloane, Aug 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    motzkin[n_]:=Hypergeometric2F1[(1-n)/2, -n/2, 2, 4]; Table[CatalanNumber[n - 1] motzkin[n], {n, 50}] (* Indranil Ghosh, Aug 04 2017 *)

Formula

n*(n+2)*a(n) -2*(2*n+1)*(2*n-3)*a(n-1) -12*(2*n-3)*(2*n-5)*a(n-2) =0. - R. J. Mathar, Aug 05 2017
Showing 1-4 of 4 results.