A151556 Values of (n^5+47*n)/48 as n ranges over the numbers that are == +-1 mod 6.
1, 70, 357, 3366, 7748, 29597, 51604, 134113, 203475, 427344, 596471, 1094240, 1444702, 2413711, 3062718, 4778067, 5884949, 8712458, 10485145, 14894314, 17595816, 24172785, 28127672, 37588181, 43189063, 56391412, 64105419, 82063428, 92438690, 116334659
Offset: 1
Programs
-
Magma
[((2*n-1)*(81*n^4-162*n^3+144*n^2-63*n+58)+(135*n^4-270*n^3+210*n^2-75*n+26)*(-1)^n)/32: n in [1..30]]; // Vincenzo Librandi, Oct 25 2014
-
Mathematica
With[{nn=20},(#^5+47#)/48&/@Sort[Join[6Range[0,nn]+1,6Range[nn]-1]]] (* Harvey P. Dale, Nov 15 2011 *)
Formula
a(n) = a(n-1)+5*a(n-2)-5*a(n-3)-10*a(n-4)+10*a(n-5)+10*a(n-6)-10*a(n-7)-5*a(n-8)+5*a(n-9)+a(n-10)-a(n-11). [R. J. Mathar, May 21 2009]
G.f.: x*(1 +69*x +282*x^2 +2664*x^3 +2957*x^4 +7494*x^5 +2957*x^6 +2664*x^7 +282*x^8 +69*x^9 +x^10)/((1+x)^5*(x-1)^6). [R. J. Mathar, May 21 2009]
a(n) = ((2*n-1)*(81*n^4-162*n^3+144*n^2-63*n+58)+(135*n^4-270*n^3+210*n^2-75*n+26)*(-1)^n)/32. - Tani Akinari, Oct 25 2014
Comments